

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release: distribution is unlimited

IMPROVISED EXPLOSIVE DEVISE PLACEMENT
DETECTION FROM A SEMI-AUTONOMOUS GROUND

VEHICLE

by

Benjamin D. Miller

December 2006

 Thesis Advisor: Richard Harkins
 Second Reader: Nancy Haegel

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-
0188

Public reporting burden for this collection of information is estimated to average 1
hour per response, including the time for reviewing instruction, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the
collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this
burden, to Washington headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the
Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC
20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Improvised Explosive Devise
Placement Detection from a Semi-Autonomous Ground
Vehicle
6. AUTHOR(S) Benjamin D. Miller

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and
do not reflect the official policy or position of the Department of Defense or the U.S.
Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Improvised Explosive Devices (IED’s) continue to kill and seriously

injure military members throughout the Iraqi theatre. Autonomous Ground
Vehicle (AGV) seeks to identify the human presence placing the IED and then
report that contact to a unit of action. This research developed a semi-
autonomous platform that can navigate to waypoints, avoid obstacles,
investigate possible threats and then detect motion that triggers a visual
camera. The information is then relayed back to the user and can trigger a
variety of actions. AGV has been tested in a numerous environments with a
wide range of success. It is limited by the communication range from its
standard 802.11G router and the continuous availability of the global
positioning system. Terrain with extensive peaks and valleys is not ideal for
the current platform. However, for detecting the human presence that is
consistent with IED placement, AGV is well suited.

15. NUMBER OF
PAGES

111

14. SUBJECT TERMS
Robotics, Autonomous, Human Presence, Improvised Explosive Device

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

IMPROVISED EXPLOSIVE DEVISE PLACEMENT DETECTION FROM A
SEMI-AUTONOMOUS GROUND VEHICLE

Benjamin D. Miller

Major, United States Army
B.S., United States Military Academy, 1997

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN APPLIED PHYSICS

from the

NAVAL POSTGRADUATE SCHOOL
December 2006

Author: Benjamin D. Miller

Approved by: Richard Harkins
 Thesis Advisor

Nancy Haegel
Thesis Co-Advisor

James Luscombe
Chairman, Department of Physics

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Improvised Explosive Devices (IEDs) continue to kill

and seriously injure military members throughout the Iraqi

theatre. Autonomous Ground Vehicle (AGV) seeks to identify

the human presence placing the IED and then report that

contact to a unit of action. This research developed a

semi-autonomous platform that can navigate to waypoints,

avoid obstacles, investigate possible threats and then

detect motion that triggers a visual camera. The

information is then relayed back to the user and can

trigger a variety of actions. AGV has been tested in a

numerous environments with a wide range of success. It is

limited by the communication range from its standard

802.11G router and the continuous availability of the

global positioning system. Terrain with extensive peaks

and valleys is not ideal for the current platform.

However, for detecting the human presence that is

consistent with IED placement, AGV is well suited.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. UAV ..1
B. TALON ..3
C. PREVIOUS NAVAL POSTGRADUATE SCHOOL (NPS) PROJECTS ..4
D. AGV MOTIVATION7

II. ROBOTIC FUNCTIONAL DESIGN9
A. PROBLEM SOLUTION9
B. BLOCK DIAGRAM11

III. EXPERIMENTAL DESIGN13
A. PLATFORM ..13

1. AGV Base13
2. Power Bus and Battery14
3. Motors and Motor Controllers16
4. Pulse Width Modulator (PWM)18

B. SENSORS ...21
1. Ultrasonic Range Finder21
2. IR Rangers25
3. Pyroelectric Infrared Motion (PIR) Detector ..26
4. Ultrasonic Motion Detector29

C. COMMUNICATION31
D. BL2000 ..32
E. COMPASS ...33
F. GLOBAL POSITIONING SYSTEM (GPS)34
G. CAMERA ..35
H. JAVA GUI (GRAPHICAL USER INTERFACE)37

IV. AGV PROGRAM ..39
A. MANUAL CONTROL40
B. GPS & COMPASS40
C. WAYPOINT NAVIGATION41
D. PROPORTIONAL INTEGRAL DERIVATIVE (PID) CONTROL43
E. COLLISION AVOIDANCE47
F. DETECTION ...50

V. RESULTS ..53
VI. FUTURE WORK & CONCLUSIONS61

A. FUTURE WORK61
B. CONCLUSIONS62

APPENDIX DYNAMIC C CODE65
LIST OF REFERENCES ..91
INITIAL DISTRIBUTION LIST93

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. A typical UAV on a mission (From [Ref. 1]).......2
Figure 2. The control station for the UAV (From [Ref.

1])..2
Figure 3. The TALON robot employed to investigate an IED

(From [Ref. 2])..................................3
Figure 4. Bender in its final form in the NPS quad.........5
Figure 5. The figure shows Lopez with all of its

components installed (From [Ref. 3]).............6
Figure 6. The figure shows Agbot with all of its

components installed (From [Ref. 3]..............6
Figure 7. AGV seen from the front..........................9
Figure 8. The diagram depicts the typical employment of

AGV...12
Figure 9. AGV viewed from the bottom......................14
Figure 10. 20 cell, 24 VDC, 2000 mAhr, rechargeable NiMH

battery pack....................................15
Figure 11. Power Bus.......................................16
Figure 12. One of the four motors connected to each wheel..17
Figure 13. Both motor controllers mounted on the underside

of AGV..17
Figure 14. Motor controller function diagram (From [Ref.

8])...18
Figure 15. Typical waveforms sent to the motor

controllers. (A) represents the motor
controllers telling the motors to stop (an
approximate 50% duty cycle). (B) shows an
approximate 25% duty cycle that corresponds to
half speed reverse. (C) shows an approximate
75% duty cycle that corresponds to half speed
forward...20

Figure 16. (A) The actual PWM circuit on AGV. (B) The PWM
circuit diagram.................................21

Figure 17. Forward-looking sensors for collision
avoidance.......................................22

Figure 18. The beam pattern emitted by the sonar (From
[Ref. 9]).......................................22

Figure 19. A generic ultrasonic detection sensor (From
[Ref. 10])......................................24

Figure 20. The side facing IR rangers......................25
Figure 21. Output voltage versus distance to objects for

the IR ranger (From [Ref. 11])..................26

 x

Figure 22. (A) is the PIR motion detector with the Fresnel
lens mounted. (B) shows the PIR sensor and the
daylight detection sensor underneath............27

Figure 23. A typical PIR detector with a Fresnel lens
attached (From [Ref. 13]).......................29

Figure 24. Side mounted ultrasonic motion detector.........31
Figure 25. AGV’s communication platform....................32
Figure 26. BL2000 rabbit microprocessor....................33
Figure 27. Magnetic HMR 3000 digital compass...............34
Figure 28. GPS 16 LVS......................................35
Figure 29. D-Link, DCS-900 camera mounted on AGV...........36
Figure 30. Java Graphical User Interface (GUI).............38
Figure 31. Dynamic C program hierarchy with costatements

included (Modified from [Ref. 3])...............39
Figure 32. Heading error mapped into the appropriate

voltage...44
Figure 33. IR ranger output voltage versus the published

output voltage from sharp.......................57
Figure 34. Outdoor object detection by the ultrasonic

range finder....................................58
Figure 35. Indoor object detection by the ultrasonic range

finder..58

 xi

LIST OF TABLES

Table 1. The table is a summary of the main hardware
components AGV uses.............................13

Table 2. Possible combinations of the motor controller
pins and the PWM circuit........................21

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF EQUATIONS

Equation 1. Frequency of the PWM circuit....................19
Equation 2. Distance to an object from the ultrasonic

rangefinder (From [Ref. 10])....................23
Equation 3. Equation of a straight line.....................44
Equation 4. Slope of the Heading Error / Voltage line.......45
Equation 5. Intercept of the Heading Error / Voltage line...45
Equation 6. Forward voltage given a heading error...........45
Equation 7. PWM voltage.....................................46
Equation 8. Heading error for a left turn...................47

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

Thanks to LT Jason Ward for his previous work with the

JAVA programming. In addition, ENS Tom Dunbar’s extensive

work on the PWM circuit was a great starting point for

AGV’s motor functions. Without the help of George Jaksha,

AGV would never have taken its current form. Thanks to the

lab group: LT Andy Hoffman, LT John Herkamp, and ENS Todd

Williamson for all their advice and support. Finally,

thanks to my thesis advisor Professor Richard Harkins for

allowing me to see this project through regardless of the

amount of destroyed components.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

The military has a wide range of projects underway to

deploy robotic platforms in operational environments.

These projects impact the battlefield with varying degrees

of success. There are two distinct areas in which the

military currently employs robotic platforms. Most notably

is the Unmanned Aerial Vehicle (UAV). The other is the use

of a ground robotic platform for IED (Improvised Explosive

Device) detection and destruction. Neither of these

platforms is autonomous. Currently, Explosive Ordnance

Disposal (EOD) units use the TALON platform to aid them in

completion of their missions.

The Department of Defense has a Joint Robotics Program

(JRP). This program is designed to research unmanned

ground systems for use in a wide range of military

applications. The program started by examining the

performance of different platforms over diverse terrain.

As the program evolved, more autonomous functions were

investigated. As with all technical based programs, the

end stage product is limited by the available technology

[Ref. 20]. Currently, most participants have encountered

similar problems. Most noticeably are onboard sensor

limitations and the processing power of the onboard

computers.

A. UAV

The most common and unclassified UAV program is the

Hunter project [Ref. 1]. The system is capable of the

following missions: real time imagery intelligence,

artillery adjustment, battle damage assessment,

 2

reconnaissance and surveillance, target acquisition and

battlefield observation. Figure 1 is a common Hunter

employed on a military mission. Figure 2 shows the Army

personnel controlling the UAV. The control station

consists of a separate vehicle and an extensive amount of

electronics.

Figure 1. A typical UAV on a mission (From [Ref. 1]).

Figure 2. The control station for the UAV (From [Ref.

1]).

 3

B. TALON

Although there are specialized ground robotic

platforms that the Army employs (cave searching in

Afghanistan, room clearing in urban environments, etc.),

the most commonly used ground robot is the TALON platform.

Figure 3 shows a typical EOD mission for the TALON.

There is testing underway to employ this platform in a

variety of roles, but the only current mission is with the

EOD units for IED detection and disarmament. The TALON is

not autonomous, weighs approximately 100 lbs, costs well

over $50,000, and has dimensions of approximately 3’ x 2’ x

3’ [Ref. 2]. These factors make it unsuitable for use in

the proposed missions for AGV.

Figure 3. The TALON robot employed to investigate an IED

(From [Ref. 2]).

 4

C. PREVIOUS NAVAL POSTGRADUATE SCHOOL (NPS) PROJECTS

The Small Robot Technology (SMART) initiative at NPS

develops prototype robotic platforms for the military. The

robots’ missions are extensive and they range in size from

inches to several yards. The development for the current

AGV started with a prototype known as Bender. Bender was

not intended for a specific mission, but was designed to

investigate autonomous architecture. It had a hardened

track chassis with a box shape. It incorporated ultrasound

sensors to aid in collision avoidance. The basic

programming (Dynamic C) along with the on-board computer (a

commercial BL2000) is the same as AGV uses. Bender had a

web-cam to view any contacts that came within its path. It

functioned autonomously to the point where it could move

from one point to another while avoiding large obstacles.

Figure 4 shows Bender in its final form. The size, slow

speed and cumbersome movement made the platform unsuitable

for our AGV’s proposed mission.

 5

Figure 4. Bender in its final form in the NPS quad.

The next generation of autonomous robots turned

towards naval specific applications. LT Jason Ward created

Lopez. This platform was the first prototype for a surf-

zone robot that can conduct reconnaissance and surveillance

on the beachhead. In the future, these platforms will be

launched from surface ships or submarines. Figure 5 shows

the working Lopez model.

The third generation of the robots from the SMART

program was created in collaboration with ENS Tom Dunbar

from NPS and Case Western University. Agbot is a much more

powerful aluminum version of Lopez. Although this platform

had problems with its structure, it is a working prototype

that has been successfully tested on sand, grass, and

 6

concrete [Ref. 3]. Figure 6 shows Agbot prepared for a

test run. Both Lopez and Agbot were designed to run

autonomously from a Java interface. Although Lopez and

Agbot are for naval applications, the same basic components

(GPS, on board computer, compass, camera, and router) along

with the computer coding are incorporated on AGV.

Figure 5. The figure shows Lopez with all of its

components installed (From [Ref. 3]).

Figure 6. The figure shows Agbot with all of its

components installed (From [Ref. 3].

 7

D. AGV MOTIVATION

The United States Army currently has soldiers being

killed or seriously wounded at an alarming rate while

deployed in Iraq. Based on my experiences, the IED

accounts for the majority of those casualties. To date, no

effective techniques have been found to adequately guard

the thousands of miles of main supply routes that are

needed to re-supply units and conduct continuing missions.

As an example, my company was assigned well over 50 miles

of roadways to continually prevent IED placement. In

addition to that continuing mission, we had Quick Reaction

Force duty, periodic raids, base security, and a host of

other tasks. To adequately guard the roadways was

virtually impossible given my 6 M1A1 tanks, 8 BFV (Bradley

Fighting Vehicles) and 135 soldiers. Within the Task

Force, my company had the only heavy armor. The IED threat

made the risk of putting softer skinned vehicles

continuously in sector too great.

The insurgents place IEDs in three stages:

1. The hole is dug or camouflage created and the IED
is placed,

2. The detonation device is placed,

3. The connections are made.

Detecting the IED itself is extremely difficult. However,

in each of the three placement stages, there is a human

presence that can be detected. The tank or BFV in that

sector has to be watching that specific small area at the

exact right time to detect the insurgents placing the IED.

The area is just too vast and the insurgents are fairly

intelligent. If a tank or BFV moves from one location, the

insurgent knows he has a window of time when that area is

 8

not being watched, a perfect time to do one of the three

IED placement stages. I estimate that 40% – 50% of the IED

casualties occur in a location where a previous IED was

detonated. There are many reasons for this, but if nothing

else the insurgents know a pattern that works in that

location and it is very difficult to stop their cycle.

AGVs could be tactically deployed to those areas to detect

any suspicious activity.

 9

II. ROBOTIC FUNCTIONAL DESIGN

Figure 7. AGV seen from the front.

A. PROBLEM SOLUTION

Figure 7 is the AGV designed to combat the problem

listed above in the project motivation. AGVs can be

tactically placed to observe potential IED locations at

appropriate times. Ideally the entire country or at least

the main supply routes would be over watched with hard

mounted visual and thermal cameras. The power would come

directly from the Iraqi power grid and each camera would

have a back up battery. This is not feasible given the

current operational and tactical situation. AGVs can be

used in a number of tactical scenarios, individually or in

groups. When an armored vehicle moves from an area a

crewmember could easily place a single AGV to monitor the

general location just vacated. In daylight, the robot

 10

could be disguised within the tremendous amount of trash

lining all of the main roads in Iraq. At night, very

little disguise would be necessary.

AGV is equipped with acoustic and IR (infrared) motion

detectors. These sensors can trigger a thermal or visual

camera once they detect motion. Upon detection, AGV sends

a message back to the unit. It can then be turned over to

manual control and the person monitoring can reposition (if

necessary) the camera to decide if an IED is being

emplaced. Or, AGV can continue to send video feed and text

messages in autonomous mode. Ideally, presence of

insurgents with IED material would trigger an armored or

infantry response for action. If soldiers in the area

could not move to intercept the insurgent in time for a

possible kill, an ambush could be employed for the next

stage of emplacement. At a minimum they would secure the

area for EOD personnel to come and further evaluate the

ordinance.

A second technique could be to place a group of AGVs

in habitual problem areas. As an example, five AGVs

networked together could over watch a given space of MSR.

There are a number of scenarios to tactically employ AGVs,

but once in sector the odds of observing the IED

emplacement have increased significantly. If one AGV

detects a possible emplacement, the other four could be

repositioned to look for the building the insurgents were

using and the routes they took to get in and out. This may

not allow for the instantaneous kill of the insurgents

emplacing the IED, but it would certainly prevent a convoy

from moving through the possible IED location.

 11

B. BLOCK DIAGRAM

Figure 8 is shows the entire AGV process from when it

is initially placed until it detects the human presence

placing the IED. As a summary, once dropped the user needs

to decide if AGV needs to move to a different location.

This can be accomplished autonomously by sending AGV to a

waypoint, or by manually controlling it into position. If

moved autonomously AGV will internally calculate the

heading it needs to travel on and then rely on the GPS to

stop at the appropriate location. While moving

autonomously, the Proportional Integral Derivative (PID)

control will ensure it stays on the appropriate heading.

Once at the desired location, AGV will turn off its motors

and turn on the detection (consisting of the motion

detectors). Once a presence (or motion) is detected AGV

will send a text message back to the user. The user then

has the option of continuing to just monitor the motion, or

to activate the on board camera to take a snap shot photos

(automatically sent to the GUI) of the area. If no

presence is detected, AGV will continue to monitor but has

the ability to autonomously move through a predetermined

set of waypoints (detecting at each) or the user can always

manually control AGV to a different location. Each time

AGV moves, the detection will be turned off and reset.

 12

Figure 8. The diagram depicts the typical employment of

AGV.

 13

III. EXPERIMENTAL DESIGN

Table 1 shows a summary of the all the main components

AGV uses.

Hardware Component Vendor Price Operating Parameters

AGV Base Superdroid Robots $209.35 14" x 13" x 4", 1" ground
clearance

Batterey Superdroid Robots $34.70 NiMH, 2 x 10 array of AA
batteries

Motors Superdroid Robots $18.95 ea. 24-volt, 195-rpm gear motors

Motor Controllers Superdroid Robots $26.95 ea.
12-55VDC, 3A to 6A, 4 pin
(brake, direction, PWM,
ground)

Ultrasonic Range Finder Superdroid Robots $62.00 Objects from 0" to 254",
utilizes IIC/I2C bus

IR Rangers Superdroid Robots $14.85 ea. Objects from 5cm to 80cm,
analog output

PIR Motion Detector Willy's Electronics $36.69 Motion up to 25m, infrared
input, utilizes a Fresnel Lens

Ultrasonic Motion Detector Kitsrus $34.99 apx. Motion up to 10m, 40 kHz
frequency

Router Newegg $129.99 802.11GHz wireless router,
max range apx. 300m

BL2000 Rabbit $449.00
Single-board computer,
22.1 MHz, 11 analog inputs,
2 analog outputs

Compass Honeywell $675.00 Digital magnetic compass,
heading to +/- 0.5 degrees

GPS GPS City $174.95 Low voltage system, utilizes
WAAS network

Camera D-Link $94.99 Web server 10/100Mbps,
640x480, 320x240 resolution

Table 1. The table is a summary of the main hardware
components AGV uses.

A. PLATFORM

1. AGV Base

The base of the AGV is an aluminum welded base

approximately 8.5 by 10 inches. The sides are 1.75 inches

high. The wheels are four inches in diameter and are

presently filled with standard packing foam for stability.

With the wheels mounted, AGV is 14 by 13 inches. It has

 14

approximately one inch of ground clearance, but with the

collision avoidance it can traverse a surprising wide range

of terrain [Ref. 4]. Figure 9 shows the bottom of AGV

along with the wheelbase.

Figure 9. AGV viewed from the bottom.

2. Power Bus and Battery

The power bus with battery consists of all commercial

off the shelf (COTS) products. The battery (Figure 10) is

mounted on the underside of AGV. It is a 20 cell, 24VDC

2000mAhr rechargeable Nickel Metal Hydride (NiMH) battery

pack [Ref. 5]. During continuous operations on a full

charge, the battery provides approximately two hours of on

station time. As an aside, the motion detectors are

 15

powered by a separate 9-volt battery for reasons discussed

later. The battery pack has a 2x10 array of standard AA

batteries.

Figure 10. 20 cell, 24 VDC, 2000 mAhr, rechargeable NiMH

battery pack.

The battery connects with the master switch that then

connects to a standard 12-volt regulator rated for 5 amps

of current [Ref. 6]. The 12-volt regulator has two outputs

that send voltage to four ports for the components that

require 12 volts (GPS, compass, router and the BL2000).

The other output feeds into a standard ML7805 5-volt

regulator. The 5-volt regulator has eight ports for the

various components that require 5-volts (IR rangers, sonar,

etc.). The power bus has connectors for the components

that require IIC (computer coding discussed later) in order

to function. There is a 16-volt 1000-microfarad

electrolytic capacitor protecting the 5-volt ports.

Additionally, the bus has a cut off switch for the motors.

 16

The switch either turns the motors completely off or allows

the BL2000 to control them. Figure 11 shows the complete

power bus.

Figure 11. Power Bus.

3. Motors and Motor Controllers

The motors are not powered through the power bus on

the topside of AGV. Their connections run directly from

the battery to the motor controllers through a circuit

located on the underside of the robot. Each wheel has its

own motor (see Figure 12) and each side of the robot is

controlled by one motor controller (see Figure 13). The

four motors are 24-volt, 195-rpm gear motors. They are

rated for less than 150-mA of current when loaded and have

a torque rating of 1.4 kgf-cm [Ref. 7].

 17

Figure 12. One of the four motors connected to each wheel.

The motor controllers are simple control boards (see

Figure 13). They are designed to work specifically with

the IG32 motors for the AGV platform [Ref. 8].

Figure 13. Both motor controllers mounted on the underside

of AGV.

The boards are easy to construct and have accessible

external pins for the direction, brake, and the pulse width

 18

modulation (PWM) option. AGV does not use the available

PWM portion on the motor controller. Instead it has an

externally constructed PWM circuit (discussed later) in

order to better control the speed. In the current

configuration pin P (PWM) is tied high (5 volts), pin B

(brake) is controlled from the BL2000. On is high and off

is low (ground). Pin D (direction) is controlled through

the external PWM circuit. It receives a standard square

wave that controls the speed depending on the duty cycle.

Figure 14 is a functional diagram for the entire circuit

board.

Figure 14. Motor controller function diagram (From [Ref.

8]).

4. Pulse Width Modulator (PWM)

AGV uses a PWM signal from an external circuit that

was originally designed to work with Agbot. The circuit

was modified for an appropriate frequency for AGV. Figure

16 (A) shows the actual circuit on AGV while (B) shows the

 19

values of the components in the circuit. The circuit

begins with a LM555 chip that produces a modified

triangular wave. The frequency is given by:

() ()()
()

1 1 2

2
3 1 2 1

0.6cc

cc F

RV R R
F

V R R R C
− +

=
+ .

Equation 1. Frequency of the PWM circuit

Based on the amount of noise on the output wave, testing

multiple frequencies showed that 1.1 KHz was optimal for

AGV. The modified triangular wave feeds into a LM324 chip,

which is simply multiple operational amplifiers configured

as a comparator. The wave goes into the positive input of

two separate comparators (one for each motor controller).

The negative input of the comparators comes from the BL2000

analog outputs. The desired speed of AGV is computed in

the code, which corresponds to a voltage. That voltage is

sent through an analog output of the BL2000 (one for each

motor controller). The voltage falls between the extremes

of the modified triangular waves voltages from the LM555.

In this arrangement, the comparator then forms a standard

zero to 5-volt square wave. The square waves feed into pin

D of the motor controllers and they send the signal to the

motors. The duty cycle of the square waves determines the

speed of the motors. For AGV, a duty cycle of 0% (straight

line 5 volts) represents full speed reverse and a duty

cycle of 100% (straight line 0 volts) represents full speed

forward. There is a linear relationship for corresponding

duty cycles and speeds [Ref. 3]. Figure 15 shows typical

waveforms that are sent to the motor controllers on AGV.

 20

(A)

 (B) (C)

Figure 15. Typical waveforms sent to the motor
controllers. (A) represents the motor
controllers telling the motors to stop (an
approximate 50% duty cycle). (B) shows an
approximate 25% duty cycle that corresponds to
half speed reverse. (C) shows an approximate
75% duty cycle that corresponds to half speed
forward.

Turning AGV is nothing more then having the BL2000 send a

different voltage for each side of the platform that

corresponds to a different waveform to the separate motor

controllers. Table 2 lists the typical values for the pins

on the motor controllers that correspond to the output

(speed) by the motors.

 21

Pin P (PWM) Pin D (Direction) Pin B (Brake) Output
H H L Full speed reverse
H L L Full speed forward
X X H Stop
L X X Stop
H 50% DC L Stop
H 25% DC L 1/2 Speed reverse
H 75% DC L 1/2 Speed forward

H = High (5-volts), L = Low (0-volts), X = H or L, DC = Duty Cycle
Table 2. Possible combinations of the motor controller

pins and the PWM circuit.

 (A) (B)

Figure 16. (A) The actual PWM circuit on AGV. (B) The PWM
circuit diagram.

B. SENSORS

1. Ultrasonic Range Finder

After AGV receives a command to move autonomously to a

new waypoint it goes into navigation mode. In that mode it

periodically checks to see if there is an obstacle in its

path. There are seven sensors associated with the

collision avoidance. The primary forward-looking sensor is

 22

the SRF08 ultra sonic range finder. Figure 17 shows the

sensor along with the first three IR rangers mounted on the

front of AGV. Figure 18 shows the beam pattern the sonar

emits. It can detect and respond to obstacles within this

pattern.

Figure 17. Forward-looking sensors for collision

avoidance.

Figure 18. The beam pattern emitted by the sonar (From

[Ref. 9]).

 23

The sonar has a maximum range of six meters or 236

inches. The control system allows the BL2000 to read an

object at a distance in centimeters or inches. The

computer code reports an obstacle at 30 inches and forces

AGV into avoidance. The sonar is a basic ultrasonic

sensor. The transmitter emits an ultrasonic pulse or

energy (at a frequency of 40 kHz) [Ref. 9]. An object

within the beam pattern then reflects that energy uniformly

within a solid angle (this angle may approach 180 degrees).

The frequency of the reflected wave is different than that

of the transmitted wave [Ref. 10]. This difference is then

converted into a distance using the following formula:

cos
2o

vtL Θ
=

Equation 2. Distance to an object from the ultrasonic
rangefinder (From [Ref. 10]).

In this equation t is the time the ultrasonic wave takes to

hit the obstacle and then return. v is the speed of the

wave. Figure 19 shows the typical design for an ultrasonic

detection sensor. The angle Θ is the same as the one

referenced in Equation 2.

 24

Figure 19. A generic ultrasonic detection sensor (From

[Ref. 10]).

To generate the ultrasonic wave the sensor uses a

piezoelectric transducer. In the transmitter, a voltage is

applied to the piezo ceramic element. This causes the

material to flex and emit the wave. Conversely, when the

wave returns and hits the receiver it causes a flex in the

piezo ceramic element that generates a voltage [Ref. 10].

The sensor is designed for continuous transmission

(although when combined with the IIC code this is not

exactly what the AGV does). Therefore, it needs both a

transmitter and receiver but they are identical in design.

Communication with the ultrasonic detection sensor is

through the IIC protocol. Although the ultrasound is the

only sensor that requires IIC, the power bus contains

additional ports to add other IIC sensors. The ultrasound

is also equipped with a front facing light sensor. AGV

does not currently use this feature.

 25

2. IR Rangers

 AGV has six infrared rangers. Three are mounted in

the forward direction to detect obstacles while navigating

autonomously (see Figure 17). They cover the same basic

area that the ultrasonic range finder covers. However, the

IR rangers have proven to be much more reliable than the

ultrasonic range finder. In addition to looking forward,

two rangers look to each side. Once AGV detects an

obstacle (from any of the forward looking sensors) it

references each of the side rangers (see Figure 20). The

side rangers tell it which side has the most clearance

(greatest distance to an object). AGV then chooses to turn

away from the obstacle based on the information the side

rangers provide it.

Figure 20. The side facing IR rangers.

 Each IR ranger is a GP2D12 from Sharp. In testing,

they can accurately measure range from approximately five

centimeters up to 80 centimeters. They are analog based

with a voltage reported from 0 to approximately 2.6 volts.

The rangers use triangulated IR light to detect the

distance to an object. The emitter continuously emits IR

light at a wavelength of approximately 850 nanometers. If

an object reflects that light, then the detector collects

 26

it. With a constant location between the detector and the

emitter, the ranger can calculate the distance to the

object [Ref. 11]. It generates a voltage that corresponds

to that distance. Figure 21 shows the non-linear graph of

voltage versus distance. For the forward-looking sensors,

AGV has a set voltage (or distance) that it knows it has to

maintain in order to not classify an object as an obstacle.

Figure 21. Output voltage versus distance to objects for

the IR ranger (From [Ref. 11]).

3. Pyroelectric Infrared Motion (PIR) Detector

 To detect a human presence placing an IED, AGV has two

types of motion detectors. The first is the PIR motion

detector. Figure 22 shows the detector mounted to the

front of AGV.

 27

 (A) (B)

Figure 22. (A) is the PIR motion detector with the Fresnel
lens mounted. (B) shows the PIR sensor and the
daylight detection sensor underneath.

PIR motion detectors are preferred by industry over other

sensors for their range and ability to not report false

detections. This is a sensor that advertises it can report

motion up to 25 meters (using a Fresnel lens with a focal

length of approximately five centimeters) [Ref. 12].

During testing AGV could reliably report motion to

approximately 15 meters. The discrepancy is more than

likely due to interference from the router. The sensor has

three main components: Fresnel lens, PIR sensor, and a

daylight sensor. AGV does not utilize the daylight sensor

(when activated it detects motion regardless of the amount

of ambient light).

 Humans produce infrared radiation that is concentrated

within a spectral range between four to 20 micrometers (of

course so do many animals making it difficult if not

impossible to distinguish). The inside of a typical PIR

detector is depicted in Figure 23. The Fresnel lens breaks

 28

up the detection area into optical zones. When a human

presence is located within the detection area and the

presence moves from one zone to another, it generates a

heat wave [Ref. 12]. The heat wave causes the front side

of the pyroelectric material, seen in Figure 22 (B), to

expand. The stress in the material then causes a

piezoelectric charge on the electrodes. The charge is

manifested as a voltage on the opposite side of the

material. This voltage is then amplified and used as

output to report a positive contact. The Fresnel lens in

combination with the PIR detector also works in reverse, or

if the human presence is cooler than the ambient

temperature. In the first case, (the human presence is

warmer than ambient) the flux across the detector is

positive. If the human presence is cooler than the ambient

temperature the flux across the detector is negative, but

it will still drive a current and then a corresponding

voltage is produced that can be amplified and used as

output [Ref. 13].

 29

Figure 23. A typical PIR detector with a Fresnel lens

attached (From [Ref. 13]).

The PIR detector is designed to drive a device (siren

or light) when it detects motion. AGV does not currently

use this feature. In order to simplify the output as read

by the BL2000, AGV has a hard wire connection from the

light emitting diode (LED) on the PIR board. Usually the

LED is used to simply light up when motion is detected.

AGV uses the voltage that the detector produces for the LED

and reports that as a positive contact. When the motion no

longer exists, the LED takes a few seconds to settle back

to a non-lighted state. This is filtered out in the actual

computer code for reporting a detection.

4. Ultrasonic Motion Detector

AGV is also equipped with a second, ultrasonic motion

detector. Figure 24 shows the detector mounted facing

 30

outward from the side of AGV. The ultrasonic motion

detector operates on the same principles as the ultrasonic

range finder. It has a transmitter and a receiver. The

transmitter continuously sends out an ultrasonic wave at 40

kHz (6 millimeter wave length). The receiver then picks up

any reflected wave and the circuitry amplifies it for the

first time. The detector constructs an envelope for the

first signal received at the 40 kHz. When there is no

movement the envelope is simply a straight-line voltage.

The circuit detects movement by recording anytime the

signal goes outside of the envelope (the receiver picks up

the wave that was out of phase with the original one) [Ref.

14]. In testing, this sensor picked up movement at

approximately 10 meters. This circuit is designed to

output a voltage of approximately 1.5 volts whenever it

detects motion and zero volts when it does not. This

output signal is directly fed into the BL2000. This sensor

is greatly affected by the router when the router is

transmitting information back to the user. AGV uses

computer code to filter out these false contacts.

Additionally the mounting position (elevated and forward of

the router antennas) helped to alleviate the problem.

 31

Figure 24. Side mounted ultrasonic motion detector.

C. COMMUNICATION

 AGV communicates via a standard 802.11GHz wireless

router. It uses the Netgear 240 Mbps, ultra fast Range Max

wireless router. The BL2000 has an ethernet cable

connection and the dynamic C code has periodic functions

that it sends back to the JAVA GUI when interfaced. The

connection with the computer is a standard TCP/IP

interface. The router has three extra ethernet cable

connections that can be used for an external camera or any

number additional components. Figure 25 shows the router

that AGV employs.

 32

Figure 25. AGV’s communication platform.

D. BL2000

 AGV’s computer processor is the BL2000 Wildcat from Z-

World. The BL2000 has a single-board computer with a

Rabbit 2000 microprocessor operating at 22.1 MHz. There

are 11 analog inputs and 2 analog outputs. Additionally

the BL2000 contains four serial ports [Ref. 15]. Figure 26

shows the BL2000 employed by AGV. The BL2000 retrieves

input instructions from the user via the Java GUI and

conversely sends information back to the user that is

displayed on the GUI. In autonomous mode the BL2000

receives input (in the form of analog voltages) from the

ultrasonic range finder and the IR rangers for collision

avoidance. Additionally, in detection mode it receives

data from the motion detectors in order to report a human

presence detection back to the user. The BL2000

incorporates all of the input and dynamic C code (discussed

later) stored on the flash-ROM then maneuvers AGV or

reports contact back to the user.

 33

Figure 26. BL2000 rabbit microprocessor.

E. COMPASS

 AGV employs a HMR3000 digital magnetic compass. The

compass has three magnetoresistive magnetic sensors for

determining a heading to within +/- 0.5 degrees. The

compass is equipped with a liquid filled two-axis tilt

sensor to provide tilt and roll data of up to +/- 40

degrees. Once calibrated, the compass compensates for

distortion due to ferrous objects and stray fields. The

compass sends an ASCII output via the BL2000 for display on

the JAVA GUI [Ref. 16]. The tilt and roll feature of the

compass is displayed on the GUI, however the data are not

 34

currently used by the BL2000 to affect any change in AGV’s

behavior. Figure 27 shows the compass.

Figure 27. Magnetic HMR 3000 digital compass.

F. GLOBAL POSITIONING SYSTEM (GPS)

AGV uses the Garmin GPS 16 LVS (Low Voltage System)

exclusively for navigating (there is no back up dead

reckoning system although one could be created). Figure 28

is the GPS employed by AGV. The GPS sends AGV’s location

through the BL2000 back to the GUI. The location is in

standard latitude and longitude coordinates [Ref. 18].

Also included in its transmission is the number of

satellites currently being tracked. When navigating, AGV

takes the current location and then determines the heading

it needs to travel on to get to the new location (discussed

later) [Ref. 3].

The GPS has the capability to utilize the WAAS (Wide

Area Augmentation System) while in North America. WAAS was

 35

originally a system to improve the GPS position for

aviation, but transitioned to also improve land based

applications (reference spec sheet). Currently there are

two WAAS satellites in operation (one over the Atlantic and

one over the Pacific Oceans) [Ref. 17]. The two satellites

work in conjunction with the 25 ground stations to

calculate possible GPS errors (clock drift, orbital errors,

atmospheric delays, etc.). The satellites broadcast the

errors and the GPS receiver then compensates for them [Ref.

3]. In testing, AGV utilizes the WAAS (showed by a

“differential fix” in the GPS section of the GUI) about

fifty percent of the time.

Figure 28. GPS 16 LVS.

G. CAMERA

 The detection portion of AGV employs the D-Link DCS-

900 internet camera. The camera is cylindrical with

dimensions of 2 ½ “ x 2 ½” x 2 ¾” and weighs 0.61 pounds.

 36

It is a standard internet camera that plugs directly into

the router with a stand-alone IP address. The array size

is 640x480, 320x240. It has an auto frame rate along with

automatic brightness and contrast control. The focus is

manual but in testing a standard setting was adequate. The

lens has a 6.0 mm focal length. The camera is limited to

daylight only (future versions of AGV will incorporate

either thermal or IR images). One of the biggest drawbacks

of the camera is its 5-volt / 2.5A requirement [Ref. 19].

Only the router requires an equivalent amount of current.

Figure 29 shows the camera. Currently the camera is

mounted on AGV’s shelf, above the motion detectors (future

locations will include a more protected area).

Figure 29. D-Link, DCS-900 camera mounted on AGV.

 37

H. JAVA GUI (GRAPHICAL USER INTERFACE)

 The Java GUI was originally written by Kubilay Uzun,

an NPS Student [Ref. 21]. AGV employs the same basic

program with minor modifications for different driving

voltages and different text messages reported from

additional sensors. The interface allows the user to input

up to 10 waypoints for AGV to navigate to (with the option

of stopping or turning at each point). It also allows the

user to control AGV in manual mode. The joystick option is

extremely useful while investigating a particular area of

interest. The upper left portion of the interface (see

Figure 30) displays all of the current compass and GPS

data. The lower left portion of the interface displays all

of the current functions AGV is performing. It also

displays the detection statements while AGV is in detection

mode. Any standard graphical image can be displayed in the

map (center) section of the interface. In many tests a

simple “Google Earth” map was incorporated into the

interface. The program allows the user to scale the map to

the appropriate latitude and longitude locations. Updates

were made to the program to include a button to take a snap

shot photo with the camera and to incorporate positive

contact text messages from the motion detectors.

 38

Figure 30. Java Graphical User Interface (GUI).

 39

IV. AGV PROGRAM

The complete Dynamic C code is contained in the

Appendix. Figure 31 shows an outline of the program

hierarchy.

Figure 31. Dynamic C program hierarchy with costatements

included (Modified from [Ref. 3]).

 40

A. MANUAL CONTROL

 After the initialization functions for the IIC

protocols and the communications setup, AGV’s program

begins by determining if the user wants to put it in manual

mode. In manual mode, all other functions and costatements

excluding updating the GPS position and compass heading are

not utilized. AGV’s BL2000 receives a signal from the user

via the GUI (reference Figure 30). If either the joystick

mode or the driving buttons are employed then AGV is

completely controlled by the user. The Java program

computes the voltages that AGV’s PWM circuit needs for the

desired direction. The BL2000 then outputs them to the PWM

circuit (which drives the motor controllers and then the

motors, reference section III. A. 4.). The original

version of the program had Bender stopped with a 50% duty

cycle. AGV will stop with approximately the same duty

cycle, but each motor controller requires slightly

different duty cycles to get its particular side to

completely stop (the right side requires 2.45 volts from

the BL2000 and the left side requires 2.40 volts).

Additionally, the motors have a slight but audible whine

noise when they are stopped in this fashion. The problem

was alleviated by having the BL2000 turn on the brake (or

make pin B on the motor controllers go high) when the user

sent a voltage that was within a small window that would

have virtually stopped AGV anyway due to surface friction.

B. GPS & COMPASS

The compass and GPS are updated continuously

regardless if AGV is in manual mode or operating

autonomously. The compass costatement receives the serial

 41

data from the compass itself and converts it into a simple

360-degree heading. The data are then tokenized and sent

back to the user. There are possible error messages

generated by the code. For example, if the pitch and roll

data are outside of the limitations for the compass to

detect, an error message is generated. Additionally, if

the heading data is corrupt, an error message is also

generated and sent to the user. The BL2000 will still

continue to try and receive appropriate data, but AGV will

not be able to navigate autonomously with a compass error.

 The GPS costatement works the same as the compass.

The data the GPS sends include the latitude and longitude

positions in one line. The program breaks up the line and

converts it into an updated location that is sent to the

user. If the GPS is not functioning or not updating for

whatever reason, the program will continue to report the

last known location for a short time. The code then

recognizes the data are not accurate. It reports the GPS

is not available to the user, and automatically places AGV

in manual mode for the user to maneuver (and turns on the

detection mode).

C. WAYPOINT NAVIGATION

 One of the best features of AGV is its ability to

navigate to up to ten waypoints autonomously. The user

puts in the waypoints and sends them to AGV from the GUI.

The waypoint data costatement then takes each of the

waypoints, tokenizes the strings they came in and puts them

in the correct order. Once the code determines that it has

received all useable waypoints, it takes AGV out of manual

mode (and turns off the detection mode if it was

 42

activated), sends a message to the user that AGV is now in

autonomous mode, and sends the data to the navigation

costatement.

 The navigation costatement is the heart of AGV’s

autonomous operation. The code first determines that the

user did not want AGV in manual mode after inputting the

waypoints. Simply sending waypoints to the BL2000 does not

automatically mean AGV goes into autonomous mode. If not

in manual mode, the code begins by converting the latitude

and longitude for the current location and the waypoints

into decimal values in minutes. This simplifies future

calculations for the desired heading. The code then

computes the range to the first waypoint (actually in

yards, but it could be converted to any units). If the

first waypoint does not fall within the range error the

program then calculates the new heading that AGV needs to

travel. Once the new heading and range are determined, the

code determines the heading error from its current heading

and the new desired heading. Currently the heading error

allows for a 5-degree fluctuation. For example, if the new

heading is 250-degrees and the current heading is 247-

degrees, then the reported heading error comes back as

zero. The range error, set at three yards, operates on the

same principle. Therefore, if the range to the waypoint is

less than three yards the program designates that as close

enough and loads the next waypoint. The navigation

costatement is called throughout movement, but the actual

voltages sent to the PWM circuit come from the PID

statement.

 43

The navigation statement has additional features that

aid the user. For example, once a waypoint is passed the

program sends a message back to the GUI indicating that the

waypoint has been cleared and AGV is proceeding to the next

one. The costatement has built in error reports that are

sent to the user if problems arise with the GPS or compass

data. As standard procedure, AGV goes into manual mode and

turns on the detection costatement once any error occurs.

Additionally, the autonomous navigation can be interrupted

at any time by the user and placed in manual mode.

D. PROPORTIONAL INTEGRAL DERIVATIVE (PID) CONTROL

AGV originally had four speeds that were just a

percentage of the maximum speed for turning towards the

appropriate heading. The closer AGV got to the heading,

the slower the wheels turned. Additionally, AGV originally

turned toward the heading like a pivot steering tank (one

side of the wheels in reverse with the other side turning

forward). This proved to be problematic. AGV has a

maximum speed of approximately seven miles an hour, which

is much greater than any of the previous robots in the

SMART program. AGV would begin to turn towards the correct

heading, but would then greatly overshoot it. The BL2000

could not send the lower percentage speed fast enough to

get the wheels to slow down in time. Increasing the number

of speeds or starting at a lower percentage was ineffective

in controlling the turn.

AGV now uses PID exclusively to control its autonomous

movement. AGV first maps the heading error into an

equivalent voltage to send to the PWM circuit. As an

approximation, 3.5 volts to the PWM circuit is full speed

forward. 2.42 volts stops AGV, and 1.0 volts puts AGV into

 44

full speed reverse. These voltages are approximate values

independent of which side the motor controllers are

controlling. When AGV’s wheels are not in contact with any

surface, one can see that these voltages are far from

exact. In developing the mapping equation, a simple linear

relationship was used. Mapping the full speed forward

voltage to the absolute value of the heading error and then

the stop voltage to a zero heading error gives Figure 32.

Heading Error vs. Voltage

0

20

40

60

80

100

120

140

160

180

200

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

Forward Voltage

H
ea

di
ng

 E
rr

or
 (D

eg
re

es
)

Voltage = (Heading Error + 403) / 167

Figure 32. Heading error mapped into the appropriate

voltage.

 The maximum absolute value heading error can only be

180 degrees (which corresponds to the maximum forward

voltage, 3.5 volts). Starting with the simple equation for

a straight line:

y mx b= + .

Equation 3. Equation of a straight line.

 45

The slope of the line is given by:

180 0
3.50 2.42

m −
=

−
.

Equation 4. Slope of the Heading Error / Voltage line.

The slope approximately equals 167 degrees per volt. The

intercept of the line is given by:

()()180 2.42
3.5 2.42

b = −
−

.

Equation 5. Intercept of the Heading Error / Voltage
line.

The intercept equals a negative 403 degrees. Therefore,

the equation for a voltage given the heading error is

simply:

403
167

Heading ErrorVoltage +
= .

Equation 6. Forward voltage given a heading error.

In the first trial AGV had no integral or derivative

component of the PID. The code simply multiplied the

voltage equation by a gain factor to overcome the inertia

of AGV and sent that voltage to the PWM circuit. However,

just proportional gain proved to be insufficient (or under

damped). When moving towards the right heading, AGV always

had an offset. When the gain was increased to overcome the

inertia of AGV, the maneuver became chaotic. AGV did not

simply overshoot the heading on a consistent basis. The

processing time the program took to adjust the heading was

slightly different depending what other costatements were

active concurrently. This, coupled with the possibility of

different surfaces (all with different levels of friction),

 46

caused the chaotic motion. These trail and errors lead to

the development of AGV’s current control system.

 Leaving AGV in an under damped state and then adding

an integral component for a gain factor was fairly

successful. Each time the program loops through the PID

costatement it increases the amount of integral gain that

AGV uses by a small amount. This occurs up to 40 cycles.

In indoor tests on a constant surface, AGV was able to find

the correct heading with minimal oscillations. However,

once AGV moved outdoors, the ability to move to the correct

heading became inconsistent.

 AGV’s complete PID costatement combines proportional,

integral, and derivative gains. Additionally, through

multiple trails on different surfaces, AGV performs much

more consistently when the movement towards the correct

heading happens while moving forward instead of “turning on

a dime” or while stationary. The final equation for the

voltage sent to the PWM circuit is given by:

() 403 403
167 167

Heading Error Heading ErrorVoltage P I Scalient D+ +
= + +

Equation 7. PWM voltage.

Scalient is a variable in the computer code that is an

adjustable percentage of the total voltage sent. The

coefficients P, I, and D were experimentally determined to

optimize the performance independent of the surface AGV

traveled on. After multiple tests on different surfaces

the coefficients were determined as follows: P = 1.1, I =

(0.05)P, & D = (0.05)P. Additionally, the tests showed

that an optimal turn toward to the correct heading occurs

 47

when one side of AGV goes forward from the voltage

determined in Equation 7, while the other side of AGV

continues to move forward, but with a voltage at 85% of

Equation 7. The PID costatement contains checks to ensure

that the PWM circuit does not receive voltages that are

more than the full speed forward voltage (approximately 3.5

volts). It also contains the same checks to ensure that

the wheels never go into reverse while moving towards the

appropriate heading.

Determining the most efficient direction AGV should

turn to move towards the correct heading is a simple

exercise in geometry. When drawn completely out, the

exercise culminates with AGV turning left when:

o 180Heading Error ≥ or
o o0 180Heading Error< > − .

Equation 8. Heading error for a left turn.

For all other cases AGV turns right to achieve the

appropriate heading. Allowing the heading error to be

greater than 180 degrees or less than –180 degrees is a

departure from the previous technique for calculating the

correct voltage. This is just bookkeeping task in the

computer code.

E. COLLISION AVOIDANCE

 AGV utilizes the forward-looking ultrasonic range

finder and the forward-looking IR rangers (see Figure 17)

for collision avoidance. The collision avoidance

costatement is only referenced when AGV is autonomously

navigating (not in manual control). The costatement begins

by calling the ultrasonic rangefinder to determine what

objects are within the navigation path. The ultrasonic

range finder communicates with the BL2000 via an IIC

 48

connection. IIC is designed to incorporate a large number

or sensors operating on only two lines of communication.

Although AGV only currently has one IIC component, it could

handle many more. In a simplified form, IIC is nothing

more than a communication via a clock and a data

transmission and works in the following manner. The BL2000

provides the ultrasonic range finder with a standard square

wave as a clock transmission. When the BL2000 wants data

from the ultrasonic range finder it has to go through a

predetermined series. The BL2000 writes a byte to the

ultrasonic range finder (through the clock transmission)

telling the range finder it wants data from it. The range

finder then sends an acknowledgement back to the BL2000 via

the data transmission line. The BL2000 then tells the

range finder what type of data it wants from it (in AGV’s

case that data is distance to objects in inches). That

transmission is again acknowledged. The range finder then

reads a byte (gets the range in inches) and the code

assigns it to a variable that the BL2000 recognizes.

 Throughout multiple tests, the ultrasonic range finder

had a series of problems. First, when the range finder did

not detect any objects in its path (distances greater than

20 feet), it reported a zero value for distance to an

object. A simple fix, assigning a value of 255 inches when

the range finder returned a zero was implemented. An

additional problem that did not occur indoors, but did

outdoors was false returns. One in every approximately 20

returns reported a false object. After trying many

different solutions, the code now takes three returns from

the range finder and averages the three to give an

approximate distance to objects. Taking greater than three

 49

returns would be optimal, but the time to loop through

those returns proved to be too great to accomplish other

missions. Throughout the field tests, the ultrasonic range

finder reporting an object at 30 inches proved to be enough

time for AGV to react and move out of the way.

 AGV also utilizes the three IR rangers (see Figure 17)

in front to detect obstacles. As discussed previously, the

IR rangers are analog so their communication with the

BL2000 is greatly simplified. Each ranger is connected

directly to one of the BL2000’s analog inputs. At the

completion of the ultrasonic range finders connection, the

code references each of the IR rangers. Through trial and

error, voltages greater than 0.2 volts but less than 2.0

volts allow AGV to turn away from an obstacle before

contacting it.

 If any of the front four sensors reports an obstacle

within the determined threshold the code then references

the side IR rangers to determine what direction AGV should

turn in order to avoid the obstacle. Whichever side has

the most clearance (greatest distance to another obstacle),

AGV turns in that direction. The code has AGV momentarily

stop (in practice this stop cannot be noticed), do an

approximate 45-degree turn in the appropriate direction,

and then drive forward at approximately three quarters

speed. At this point the collision avoidance statement is

complete and AGV moves back into the navigation statement.

However, if AGV did not clear the obstacle or if there is

now another obstacle in its path it will detect it and

start the process over again.

 The code allows for the possibility that there may be

an error in processing, or an obstacle that AGV simply did

 50

not detect in time to alter its course in order to avoid

it. At approximately 2.0 volts and greater (from

experiment, not theory) the IR rangers have an obstacle

within 10-inches or closer and conversely when the

ultrasonic range finder reports objects closer than 10-

inches, there is one (obviously). Assuming the rear IR

ranger reports clear, the code then has AGV go into full

speed reverse for approximately one yard. AGV then stops

and again references the side IR rangers and the process is

the same as before. Ideally a bumper sensor would also be

incorporated with this statement, but AGV does not

currently have this feature.

F. DETECTION

 The detection mode consists of stopping AGV completely

and beginning to take inputs from the motion detectors.

AGV can turn on the detection mode in three different ways

(reference Figure 8). Once AGV completes the manual

commands sent to it, assuming there are no subsequent

autonomous commands, the detection mode automatically turns

on. Upon completion of its autonomous navigation, AGV

pauses in order to prevent the motion detectors from

reporting its own movement as contact, and then turns on

the detection mode. Additionally, if for any reason there

is an error in navigation or if the compass or GPS do not

function, AGV stops and turns on the detection mode.

 The detection statement begins by turning the brake on

to prevent any false contact reports from the motors. The

code then has the BL2000 read the voltages from the motion

detectors. In testing, both motion detectors had a

tendency to report false contacts when mounted close to the

router. The current location (reference Figure 7) reduces

 51

the effect but does not eliminate it. Powering the motion

detectors from a separate 9-volt battery also eliminated

some of the interference. As a hardware consideration,

this is somewhat inconvenient, but a fully charged 9-volt

battery can continuously power the motion detectors for

over a month. In testing, the PIR motion detector is

affected less by the router than the ultrasonic motion

detector. The code has a single filter for the PIR

detector. The PIR detector has to detect motion eight

times before it reports a positive contact. For the PIR

detector, the motion does not have to be continuous.

 The ultrasonic motion detector is more prone to detect

false contacts. It has the same filter as the PIR detector

but the motion for the ultrasonic detector must be

continuous for eight loops through the detection

costatement. The router has a tendency to cause the

ultrasonic motion detector to randomly put out a voltage

(report a contact). Testing showed that the two combined

filters eliminated the majority of the false contact

reports.

 The detection statement keeps track of how many times

the motion detectors report a contact. When either of the

detectors has a positive contact the code generates a text

message that includes the total number of contacts that

both of the detectors have detected. This message is sent

back the user and displayed in the lower left portion of

the GUI (see Figure 30). The user then has the choice of

simply taking a snap shot photo of what AGV sees or turning

to the streaming video portion of the GUI. The snap shots

are stored in a folder on the desktop of the user’s

computer. The streaming video has a delay of approximately

 52

two seconds. This delay makes driving AGV at a rapid rate

difficult, but a slow traverse of the suspected enemy area

is possible. Ideally, AGV would leave the camera off until

the motion detectors reported a possible contact, but this

feature is not currently available. Additionally, testing

has shown that a button on the GUI that would clear the

number of positive contacts the motion detectors

accumulated would be a useful feature. Currently, the only

way to zero out the number of positive contacts is to click

the stop button in the manual control section or to reset

the BL2000.

Additional motion detectors are needed to cover all

directions a contact could come from. AGV can turn towards

the likely avenue of approach for IED emplacement, but

ideally AGV would detect motion in all directions.

Currently, AGV covers approximately 180 degrees (forward

facing and to the right side).

 53

V. RESULTS

Partial results for the separate components of AGV

were included in the above chapters. However, some general

analysis can be done by section. The exterior of AGV is

not currently suitable for the harsh dessert environment

(or any outdoor environment). Ideally, AGV will be

contracted out to an engineering firm who will be able to

reduce the actual size to approximately a brick. AGV needs

to look like its environment. In the Iraqi theatre this

means modeling basic trash on the side of the road.

The wheels of AGV are rugged enough for most

environments but the packing foam they are stuffed with

could be improved. No matter how tightly the packing is, a

more uniform material would be optimal. Possibly a liquid

gel or even a hardened inner tube could be used. This is

most noticeable when AGV attempts to navigate on dirt or

loose gravel.

AGV’s battery was adequate for an initial prototype,

but will not be suitable for the end state platform. In

the initial tests, 2000mAhr was sufficient for two hours of

on station time. However, once the GUI interface and the

router were incorporated onto the platform, the on station

time was reduced to approximately one hour (depending on

how many waypoints AGV had to navigate to). Additionally,

once the camera was added the on station time was reduced

even further to 30 minutes. A lithium battery is probably

the best solution. However, in the short term an external

digital switch written in the code to turn the camera on

and off would suffice. The camera could come on only when

the motion detectors reported a possible contact and then

 54

turn off after a predetermined amount of time, or after the

detectors did not detect any further presence. In the same

principle, switches to the collision avoidance sensors

could turn them off when AGV was stopped or in manual

control.

AGV’s autonomous navigation is the heart of its

capabilities. In AGV’s final test, the PID statement in

the computer code works well when the battery is fully

charged and the surface is known prior to entering an

environment. However, when the surface is drastically

different than the norm (i.e. moving from concrete to moist

soil) then AGV’s performance is greatly reduced.

Additionally, when the battery begins to drop past a ¼

charge it affects the motors speed regardless of what speed

the BL2000 tells the motor controllers to move at. There

is no easy fix for this problem. A possible solution is to

develop a program that can detect the resistance the wheels

are under and then adjust the PID coefficients accordingly.

Another solution may be to research for a compass that

responds on the microsecond scale to give AGV adjustments

in direction that are not delayed and affected by the

terrain it has just traversed.

AGV does not have a back up dead reckoning system to

move autonomously to a waypoint. In testing this was only

a problem around large trees and tall buildings. AGV would

very rarely lose the GPS signal altogether, but frequently

would lose its differential fix. Although this is not

critical for its operation, it does mean AGV’s position was

only within +/-10 meters at best. If AGV’s mission is to

detect a presence in a general area, this position error

will not greatly affect it. However, if AGV is assigned to

 55

a very specific location then the motion detectors may not

reach out to the extent that the user needs them to.

Additionally, when AGV was navigating autonomously with a

fix that kept changing from differential to standard, the

route it took to the waypoint would appear to be chaotic

until the GPS was consistent. If the GPS was inconsistent

for any length of time (over 3 minutes) then there is a lot

of wasted movement when AGV attempts to stop at its final

destination. Increasing the proximity error could help

with this, but without significant advances in the GPS

technology there is not an easy fix for this drawback.

In the final test, AGV’s detection system was simply

adequate. The ultrasonic motion detector is significantly

affected by the components on AGV itself, the router and

the camera most noticeably. Filtering out the false

contacts is more of an art than a physics problem. Once

the proper filter works for just the onboard components,

then the environment has to be considered. Acoustic waves

from any number of sources greatly affect the sensors

performance. There is a medium that can be reached so the

sensor does not over report, and does not miss obvious

motion contacts. Unfortunately, for the ultrasonic sensor

that medium only occurs when the contact is within a few

meters of AGV. The PIR motion detector is not affected by

environmental noise and its filter can be adjusted to

filter out almost everything but a thermal motion contact.

In the future, moving to all PIR detectors should alleviate

the false contacts or in not reporting an actual contact.

The camera being continuously on was discussed

earlier; however, there are other drawbacks. The field of

view is adequate for almost all situations, but the tilt of

 56

the camera does not always correspond in optimally

assessing a contact. For example, in the final test when

AGV detected a contact and the contact was close to the

ground (i.e. digging a hole to place an IED) then the

system worked well. But, when the contact was simply

moving in the area then the height of the person was too

great to capture the face. The positive is the contact is

detected and a partial picture is obtained, but if the user

desires to capture the complete description of the suspect

the camera has to be tilted up. A possible solution is the

mount the camera on a pan and tilt servo (separate from

moving the entire platform). This solution is feasible,

but adds additional processing time for the BL2000 and will

add additional power requirements.

Obstacle avoidance during autonomous navigation is

essential for this platform. Currently the system is

insufficient and needs improvement. Despite carefully

defining the field of view for the forward facing sensors

and ensuring there were overlap between them, some

obstacles were reported before AGV could take action to

avoid them. Making AGV more rugged and incorporating a

bump sensor will help minimize the effects of hitting an

obstacle, but improvements in the basic system can still be

made. Additionally, far too often AGV detects an obstacle

when none exists. This causes the platform to continually

have to correct its current heading and can make the

autonomous navigation to waypoints look chaotic. The

ultrasonic range finder detects obstacles at almost double

the range of the IR rangers. However, the final test

showed the ultrasonic range finder is susceptible to the

same environmental noise that the ultrasonic motion

 57

detector is. Averaging the returns from the sensor did

alleviate some of the false returns, but it reduced the

range of the sensor to just beyond the range of IR rangers.

Simple solutions may be to increase the number of IR

rangers in the front spread or to research for another IR

ranger that has a greater range. Another solution may be

to put a filter, either hardware or in the code, on the

ultrasonic range finder to eliminate the false returns.

Figure 33 details how the IR ranger matched its published

data. Figures 34 and 35 show how accurately the ultrasonic

range finder reported distance to different objects both

indoors and out. The figures also show how inaccurate the

range finder is when the ultrasonic motion detector is on.

IR Ranger

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Distance to Object (cm)

O
ut

pu
t V

ol
ta

ge
 (V

)

Measured Data from AGV
Published Data from Sharp

Figure 33. IR ranger output voltage versus the published

output voltage from sharp.

 58

Figure 34. Outdoor object detection by the ultrasonic

range finder.

Figure 35. Indoor object detection by the ultrasonic range

finder.

 59

The communication platform limits the range AGV can be

from the user if the user wants instantaneous feedback.

However, AGV will continually transmit its detection data,

along with all of the navigational information regardless

if the user is within range or not. In the final test, AGV

was left in a location while the GUI interface was moved

out of range. After moving back within range, the

interface picked up the data and displayed the number of

contacts that were received while the interface was not

connected. Although not ideal, this does show that

continuous direct communication is not necessary. There

are current research projects that show promise in roving

wireless networks able to deploy over large areas. With

just the standard 802.11G router, AGV could work well in

that environment. In the long term, AGV would move away

from the standard router connection and be incorporated

into existing communication networks for the Army and

Marine Corps (Blue Force Tracker).

 60

THIS PAGE INTENTIONALLY LEFT BLANK

 61

VI. FUTURE WORK & CONCLUSIONS

A. FUTURE WORK

 The majority of future work will be integrating AGV

into the Blue Force Tracker communications network the Army

uses or the Marine Corps equivalent. Introductory research

and contacts have shown that this is certainly possible

without any major hardware overhauls and virtually no

software adjustments. Having each AGV appear as its own

icon on the GUI of every friendly vehicle within in range

is paramount. With this integration, AGV could not only

communicate with the direct user, but all other units and

vehicles in the area of operations would know exactly what

AGV sees on its current mission.

 Integrating a new thermal camera is also a key

component of AGV’s future development. Although currently

ordered for the SMART initiative, basic tests have to be

conducted along with meeting additional software

requirements. The thermal camera is critical for AGV to

perform its mission in the most likely of environments,

limited visibility.

 The sensor array for the obstacle avoidance is simply

inadequate. Future work in either improving the array

through hardware and software or in designing new sensors

altogether will be essential. Detecting obstacles for

avoidance when in fact none exist is not an issue if it

only happens periodically. However, when it occurs every

few seconds, then AGV does not have the processing power to

continue its mission.

 The BL2000 is an excellent on board computer for a

prototype, but may not be ideal for the end state platform.

 62

The total processing time of the program is on the seconds’

time scale. Utilizing Object Oriented Programmable

Integrated Circuits (OOPic) would be an excellent way to

take some of the basic functions away from the on board

computer, freeing up valuable processing time. This could

bring the time down to the microseconds’ scale.

Additionally, OOPics can greatly reduce the power

consumption, giving AGV longer time on station. The SMART

initiative is researching the OOPic for use on all of their

platforms.

 The next generation of AGV will incorporate the

majority of changes discussed previously. However, the

platform itself needs to be hardened and more than likely

about twice the current size. No matter how sophisticated

the obstacle avoidance is, there are certain surfaces that

AGV must always be able to traverse. A larger and more

rugged wheel design will be key in allowing AGV to move

through light mud to loose gravel without a large

adjustment to the PID coefficients. Larger wheels will

also increase the ground clearance. This is important for

movement over obstacles the avoidance system does not

detect.

B. CONCLUSIONS

Overall, AGV accomplishes the mission the SMART

initiative set for it. Its current limitations are due in

a large part to the hardware engineering inability by the

prototype designer and the communications platform.

However, even in the current form AGV can: autonomously

navigate to waypoints, avoid obstacles, investigate

possible threats and then detect motion that triggers a

visual camera. The information is then relayed back to the

 63

user and displayed on a fairly sophisticated interface.

Hardware adjustments and additional software refinements

are needed prior to AGV being fielded to the Army or Marine

Corps.

There is not one solution in combating the IED

problem. Every proposed solution has advantages and

drawbacks. AGV’s advantages can provide the user with a

small, semi-autonomous, relatively inexpensive platform

that can aid in over-watching the main supply routes where

IEDs are typically placed. Additionally, AGV can assist in

over-watching a specific target for future action. AGV’s

drawbacks include limited on station time, limited field of

view, and a limited communication range. The SMART

initiative believes that AGV can quickly be engineered for

rapid fielding to combat units where the IED is an everyday

reality.

 64

THIS PAGE INTENTIONALLY LEFT BLANK

 65

APPENDIX DYNAMIC C CODE

 66

/**

AGV_NAV_ver.c
 AGV Nav is the navigation interface with the BL2000 processor used
to
 control the Physics Department robot known as AGV (Autonomous
Ground
 Vehicle). Currently, the program compiles with five warnings
 (Dynamic C 7.04P3).

Version History:

 --- Version 1 ---
 July - September, 2004
 CDR Jerry Stokes
 LT Sean Niles
 LT Irv Pollard
 LT Jason Ward
 LT Brett Williams

 Changes:
 This version implements the Sonar costatment, allowing Bender to
react to obstacles in his path. Algorithms to handle impediments to
Bender's planned path have also been implemented. Nav - pared down to
handle only calculations of GPS positions and generating headings and
ranges for following waypoint paths. GPS is now initialized to only
give 2 sentences (one cannot be turned off) so that data culling when
parsing the GPS sentence is reduced. WayPoint - algorithm was
optimized and altered to allow the user to input an exact path desired.
Previous versions used the closest waypoint as the next waypoint to
which to drive. Control - PID control was implemented as its own
costatement, partly to alleviate the delay associated with taking
manual control when Bender was performing calculations in Nav.
Networking - Ports were shifted to 4001 and higher to avoid conflicts
with reserved ports. UDP is still implemented, however with greater
throughput realized from 802.11g wireless hub, it may be advantageous
to switch to TCP/IP in later versions. IP addresses were shifted to
192.168.0 domain for the wireless router. Should future users decide
to move Bender to the university network, static IP addresses will need
to be obtained for the camera, Bender, and router.

 --- Version 2 ---
 Created for SE4015, Summer 2003
 James Knoll
 Kubilay Uzun
 Robert Williams

 This program was written to run on the BL2000 and control the
Nav, Sensors, and Motors of Bender. Compiles with two warning in
Dynamic C 7.04P3. Newer versions of Dynamic C will require
modification in the networking since UDP has changed.

 --- Version 3 ---
 Created for the AGV, Summer and Fall 2006
 Ben Miller

 67

 This program converts the old Bender code to work with a wheeled
robot. The communication is now TCP/IP. The PID is completely
different along with the collision avoidance (there is a portion with
IIC to control the ultrasonic sensor). The navigation statement was
modified slightly (all the voltages are now sent from the PID
costatement). There is a new detection costatement that did not
previously exist.

CONNECTIONS

 Nav to Motor
 dac1 <---> //left side wheels
 dac0 <---> //right side wheels

 Nav to GPS
 tx2 RED
 rx2 GRN
 grnd BLK

 Nav to Compass
 tx1 grn
 rx1 red
 grnd BLK

/

//IIC Settings

#define READDELAY 15
#define MAX_SENTENCE 100

//Network Connections

#define MY_IP_ADDRESS "192.168.1.81"
#define INTERFACE_ADDRESS "192.168.1.80"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "192.168.1.1"

#define WP_PORT 4002
#define MAN_PORT 4001
#define COMPASS_PORT 4004
#define GPS_PORT 4003
#define ERROR_PORT 4005
#use "dcrtcp.lib"
#memmap xmem

//Serial Port Settings

#define BINBUFSIZE 127
#define BOUTBUFSIZE 127
#define CINBUFSIZE 127
#define COUTBUFSIZE 127

//GPS Variables

 double curr_lat;
 double curr_lon;

 68

 const int xmit_delay = 100;

 char sentence[MAX_SENTENCE];
 char dir_string[2];

 typedef struct {
 int lat_degrees;
 int lon_degrees;
 double lat_minutes;
 double lon_minutes;
 char lat_direction;
 char lon_direction;
 } GPSPosition;

 GPSPosition current_pos; // Declare new GPSPosition variable

 const int gps_delay = 0.5; //seconds to delay between gps readings

 int gps_error, gps_error_count;

 const float pi = 3.14159;

 const char GPS_Reset[]="$PGRMI,,,,,,,R\r\n"; //Unit reset
 const char GPS_Sent_Clr[]="$PGRMO,,2\r\n"; //clears all output

//sentences
 const char GPS_GGA_Enable[]="$PGRMO,GPGGA,1\r\n";//enables the GGA

 //sentence

 unsigned long gps_wait_time;
 const int gps_timeout = 1;

//New Detection Statement Variables
 char h[30];
 char c[12];
 int detect_flag, motion_flag, a, b, time_flag;
 float motion1_volts, motion2_volts;

//New PID Statement Variables
 char s[12]; //compass inputs if you want to test the PID
 char p[12];
 float turnvolts, fwdturnvolts;
 float scale, scaleint, P, I, D;
 int flag, flagint, compconv, k, sonarplus;

//New Compass Statement Variable
 float curr_hdg;
 char compass_sentence[MAX_SENTENCE];
 int compass_error;

 const int compass_delay = 10; //mili-seconds to delay between compass

 //readings, this was 50
const char init_str[] = "#BAD=8*7A\r\n"; //5 times per second, the first

 //number was 11

 int string_pos;
 char input_char;

 unsigned long compass_wait_time;
 const int compass_timeout = 1;

 int Compass_update;

 69

//Communication Setup

 word status, port;
 longword host;
 udp_Socket compass_data, gps_data, error_data, sonar_data;
 sock_type wp_data, man_data;
 char cmdBuf[1024];
 char cmdstr[20], *cmdptr;
 char wptBuf[4096];
 char wptstr[500], *wptptr, *wpttmp;
 char error_buf[200];

//Navigation Variables

 const float brg_error = 5.0; //Allowable Bearing Error
 const float rng_error = 5.0; //Allowable range error (in yards)

 float lat_diff, lon_diff; //The amount of Lat/Long (in Seconds and
 //Decimal Seconds between Bender's

 //current
 //position and the next waypoint

float theta; //Angle (deg) from True North to next waypoint
 float hdg_error; //Angle (deg) from current heading to next waypoint

 float new_hdg; //The Desired heading in degrees

 double rng, temp_rng; //Range and temporary range (in yards)

//Waypoint Variables

 typedef struct
 {
 double lat;
 double lon;
 char action;
 }WP; //Define WP structure

 WP waypoints[10]; //stores the list of waypoints
 char passed_waypoint[10]; //Stores action value for passed waypoints
 int curr_wp; //current wp
 char *temp;
 char *temp_lat, *temp_lon;
 char *temp_action;

 double lat, lon, wlat, wlon;

// CTRL bools

 int man_ctrl;
 int GPS_updated;

// Control Variables

 const float PW_MAX = 3.50; //Max pulse width yields max fwd speed
 const float PW_STOP = 2.42; //Pulse width that results in stop command
 const float PW_REV = 1.50; //Pulse width that results in max reverse
 double Error; //Variables for intermediate calculations of
 double sumError; //Running sum for integral error
 double prevError[10]; //Variable equal to error from previous n time

//steps
 float lt_spd, rt_spd; //manual control variable, really could clean this up

 70

 float spd; //Speed variable, need this for manual control, but not PID
 const int rt_ch = 0; //right side
 const int lt_ch = 1; //left side

//The new IIC functions and protocols

#ifndef i2c_SCL_H()
#define i2c_SCL_H() BitWrPortI(PEDR,&PEDRShadow,0,0)
#define i2c_SCL_L() BitWrPortI(PEDR,&PEDRShadow,1,0)
#define i2c_SDA_H() BitWrPortI(PEDR,&PEDRShadow,0,1)
#define i2c_SDA_L() BitWrPortI(PEDR,&PEDRShadow,1,1)
#endif
int i2c_clocks_per_us;

#define cWAIT_5_us asm ld a, (i2c_clocks_per_us) $\
 sub 3 $\
 ld b,a $\
 db 0x10, -2

unsigned long t0;
#define time 5

//Collision Avoidance Variables

float fright, fleft, front, lside, rside, rear;

//////Begin the IIC protocol///////

void write_byte(char d)
{
 int i;
 for (i=0; i<8; i++)
 {
 for (t0=MS_TIMER;MS_TIMER<t0+time;);
 if (d & 0x80)
 {i2c_SDA_H();}
 else
 {i2c_SDA_L();}
 //cWAIT_5_us;

 i2c_SCL_H();
// cWAIT_5_us;
 for (t0=MS_TIMER;MS_TIMER<t0+time;);
 i2c_SCL_L();
// cWAIT_5_us;

 d=d<<1;
 }
 i2c_SCL_L();
 i2c_SDA_H();
}

int read_byte(char *ch)
{
 auto char res,cnt;
 i2c_SDA_H();

 for (cnt=0,res=0; cnt<8; cnt++)
 {
 i2c_SCL_H();
 while (BitRdPortI(PEDR,2)==0);//SCL Clock Stretching
// cWAIT_5_us;

 71

 for (t0=MS_TIMER;MS_TIMER<t0+time;);
 res<<=1;
 if(BitRdPortI(PEDR,3)) res|=0x01;
 i2c_SCL_L();
 //cWAIT_5_us;
 for (t0=MS_TIMER;MS_TIMER<t0+time;);
 }
 *ch=res;
 return 0;
}
void i2c_start_tx()
{

 i2c_SCL_H();
 i2c_SDA_H();
 cWAIT_5_us;
 i2c_SDA_L();
 cWAIT_5_us;
 i2c_SCL_L();

}

void i2c_stop_tx()
{

 i2c_SDA_L();
 for(t0=MS_TIMER;MS_TIMER<t0+time;);
 //cWAIT_5_us;
 i2c_SCL_H();
 cWAIT_5_us;
 i2c_SDA_H();
}

void i2c_init()
{
 int i;
 void i2c_stop_tx();
 i2c_SDA_H();
 cWAIT_5_us;
 i2c_SCL_L();
 for (i=0; i < 3; i++)
 {
 i2c_stop_tx();
 }
}

void giveack()
{
 i2c_SDA_L();
 cWAIT_5_us;
 i2c_SCL_H();
 for(t0=MS_TIMER;MS_TIMER<t0+200;);
 //cWAIT_5_us;
 i2c_SCL_L();
 cWAIT_5_us;
 i2c_SDA_H();
}

 72

void getack()
{
 i2c_SDA_H();
 while (BitRdPortI(PEDR,3) == 1);
 if (BitRdPortI(PEDR,3) == 1)i2c_stop_tx(); //originally uncommented
 i2c_SCL_H();
 for (t0=MS_TIMER;MS_TIMER<t0+time;);
 //cWAIT_5_us;
 i2c_SCL_L();
}

///////End IIC and collision avoidance////////

// Function Prototypes

int compass_get_hdg(char sentence[MAX_SENTENCE]);

int gps_get_position(GPSPosition *newpos, char *sentence);

int gps_parse_coordinate(char *coord, int *degrees, float *minutes);

int ERROR_function(float new_hdg);

void msDelay (long sd);

///////Main Program///////

main()
{

 int i;

//Initialization

 char sonar;
 brdInit();
 i2c_init();

 //Communication Initialization

 sock_init();
 if (!(host = resolve(INTERFACE_ADDRESS))) {
 exit(3);
 }

 if (!udp_open(&error_data, ERROR_PORT, 0xffffffff, ERROR_PORT, NULL)) {
 exit(3);
 }
 sock_mode(&error_data, TCP_MODE_ASCII);
 sock_mode(&error_data, UDP_MODE_NOCHK);

 if (!udp_open(&wp_data, WP_PORT, 0xffffffff, WP_PORT, NULL)) {
 sock_puts(&error_data, "$Unable to open WP UDP session\n");
 exit(3);
 }
 sock_mode(&wp_data, UDP_MODE_NOCHK);

 if (!udp_open(&man_data, MAN_PORT, 0xffffffff, MAN_PORT, NULL)) {
 sock_puts(&error_data, "$Unable to open MANUAL UDP session\n");
 exit(3);

 73

 }
 sock_mode(&man_data, UDP_MODE_NOCHK);

 if (!udp_open(&compass_data, COMPASS_PORT, 0xffffffff, COMPASS_PORT,
NULL)) {
 sock_puts(&error_data, "$Unable to open COMPASS UDP session\n");
 exit(3);
 }
 sock_mode(&compass_data, TCP_MODE_ASCII);
 sock_mode(&compass_data, UDP_MODE_NOCHK);

 if (!udp_open(&gps_data, GPS_PORT, 0xffffffff, GPS_PORT, NULL)) {
 sock_puts(&error_data, "$Unable to open GPS UDP session\n");
 exit(3);
 }
 sock_mode(&gps_data, TCP_MODE_ASCII);
 sock_mode(&gps_data, UDP_MODE_NOCHK);

 sock_puts(&error_data, "$Sockets are established\n");

 if (sock_recv_init(&wp_data, wptBuf, (word)sizeof(wptBuf))) {
 sock_puts(&error_data, "$Could not enable WP buffer.\n");
 exit(3);
 }
 if (sock_recv_init(&man_data, cmdBuf, (word)sizeof(cmdBuf))) {
 sock_puts(&error_data, "$Could not enable MAN buffer.\n");
 exit(3);
 }

 //Motor Initialization

 anaOutVolts(rt_ch, PW_STOP);
 anaOutVolts(lt_ch, PW_STOP);

 //Flag Initialization

 man_ctrl = 1;
 GPS_updated = 0;
 Compass_update = 0;

 //Detection Initialization

 time_flag = 0;
 detect_flag = 1;
 motion_flag = 0;
 a = 0;
 b = 0;

 //Compass Initialization

 serBopen(9600); //BAUD rate
 serBwrFlush();
 serBputs(init_str);

 //GPS Initialization

 serCopen(9600); // Open serial port C
 serCwrFlush(); // Flush serial port C Buffer
 serBputs(GPS_Reset); // Send Reset signal to GPS Receiver
 serBputs(GPS_Sent_Clr); // Send Clear signal to GPS Receiver
 serBputs(GPS_GGA_Enable); // Send GGA Sentence enable signal

 74

 // (position info)

 //PID Initialization

 //printf("Enter new heading: "); //These are just for testing
 //new_hdg = atof(gets(s));
 //printf("Enter the desired Gain 1.0 to 1.3: ");
 //P = atof(gets(p));
 P = 1.10;
 I = 0.05*P;
 D = 0.05*P;

 //Control Initialization

 sumError = 0.0;
 for (i = 0; i < 10; i++) prevError[i] = 0.0;

 //Turn the Brake on Initially

 digOut(0,1);

 ///////Main Loop///////

 while (1)
 {
 tcp_tick(NULL);

 ///////Recieve Manual Control Data

 costate
 {
 waitfor(sock_recv(&man_data, cmdstr,
(word)sizeof(cmdstr)));

 digOut(0,1); //turn the brake on initially if it wasn't
already
 detect_flag = 1; //turn off the dectection
 motion_flag = 0; //reset the motion flag if AGV moves

 //Tokenize the string and convert to integers
 lt_spd = atof(strtok(cmdstr, " "));
 rt_spd = atof(strtok(NULL, "/n"));

 if ((rt_spd > 2.6) || (lt_spd > 2.6) || (rt_spd < 2.24) ||
(lt_spd < 2.24))
 {
 digOut(0,0);
 detect_flag = 0;
 } //turn off brake if get enough voltage

 //Voltage to the motors (could clean this up)

 anaOutVolts(rt_ch, rt_spd);
 anaOutVolts(lt_ch, lt_spd);

 if (!man_ctrl)
 {
 sprintf(error_buf, "$manual control data received, in
manual control, detection is off\n", curr_wp);
 sock_puts(&error_data, error_buf);
 }

 75

 //Update the flags

 man_ctrl = 1;

 //flush prevError array so next nav order will have minimum
error when it begins

 for (i = 0; i < 10; i++) prevError[i] = 0.0;

 }//Recieve Manual Data

 ///////Compass

 costate
 {
 waitfor (DelayMs(compass_delay));

 serBrdFlush();
 string_pos = 0;

 input_char = serBgetc();

 //find begining of sentence

 compass_wait_time = SEC_TIMER + compass_timeout;

//timeout if compass not working
 while (input_char != '$')
 {
 if (SEC_TIMER > compass_wait_time) abort;
 input_char = serBgetc();
 //printf("%c",input_char);
 msDelay(READDELAY);
 }
 //printf("\n");

 //read the sentence

 while (input_char != '*')
 {

 compass_sentence[string_pos] = input_char;
 string_pos++;
 if(string_pos == MAX_SENTENCE)
 string_pos = 0; //reset string large

 input_char = serBgetc();
 //printf("%c",input_char);
 msDelay(READDELAY);
 }

 compass_sentence[string_pos] = 0; //add null
 sock_puts(&compass_data, compass_sentence);
 //tcp_tick(NULL);

 if((compass_error = compass_get_hdg(compass_sentence)) !=0)
 {
 sprintf(error_buf, "$Compass Error: %d\n",compass_error);
 sock_puts(&error_data, error_buf);
 //tcp_tick(NULL);
 //printf("$Compass Error: %d\n %s\n",compass_error,compass_sentence);
 }

 76

 else
 {
 //printf("Current heading: %f\n", curr_hdg);
 Compass_update = 1;
 }

 //curr_hdg = 0.0; //testing purposes
 }//Compass

 ///////Recieve WP Data

 costate
 {
 waitfor(sock_recv(&wp_data, wptstr, (word) sizeof(wptstr)));

 //find begining of string

 wptptr = wptstr; //assign a pointer
 while (*wptptr != '$') //Step through until begin string
 wptptr++;

 wptptr++;

 //Tokenize

 temp_lat = strtok(wptptr, " ");
 temp_lon = strtok(NULL, " ");
 temp_action = strtok(NULL, " ");

 for (i = 0; i < 10; i++)
 {
 if ((temp_lat == 0 && temp_lon ==0) ||
 waypoints[i].action != "P")
 {
 waypoints[i].lat = strtod(temp_lat, NULL);
 waypoints[i].lon = strtod(temp_lon, NULL);
 waypoints[i].action = *temp_action;
 //printf("wp%d: %f %f %c\n", i, waypoints[i].lat,
waypoints[i].lon, waypoints[i].action);
 } //End if Statement

 temp_lat = strtok(NULL, " ");
 temp_lon = strtok(NULL, " ");
 temp_action = strtok(NULL, " ");
 }//End for loop

 curr_wp = 0; //Resets current WP to 1st waypoint. If this
is an update to
 //waypoints, Nav will increment curr_wp until a good
 //waypoint is there.

 //update the flags

 man_ctrl = 0;

 sprintf(error_buf,
 "$WP's recieved. In AUTO NAV and preceeding to WP %d\n",
 curr_wp);
 sock_puts(&error_data, error_buf);
 }//End Waypoint Costatement

 77

 ///////GPS

 costate
 {
 waitfor (DelaySec(gps_delay));
 serCrdFlush();
 string_pos = 0;
 input_char = serCgetc();

 //find begining of sentence

 //printf("\n");
 gps_wait_time = SEC_TIMER + gps_timeout; //timeout if gps

 not sending data
 while (input_char != '$')
 {
 if (SEC_TIMER > gps_wait_time) abort;
 input_char = serCgetc();
 //printf("%c",input_char);
 msDelay(READDELAY);
 }

 while ((input_char != '\r') && (input_char !='\n'))
 {
 sentence[string_pos] = input_char;
 string_pos++;
 if(string_pos == MAX_SENTENCE)
 string_pos = 0; //reset string if too large

 input_char = serCgetc();
 msDelay(READDELAY);
 }
 sentence[string_pos] = 0;
 sock_puts(&gps_data, sentence);
 //tcp_tick(NULL);
 gps_error = gps_get_position(¤t_pos, sentence);
 if ((gps_error == 0) || (gps_error == -1))
 gps_error_count = 0;
 else
 {
 gps_error_count ++;

 //Stop AGV and place in manual control if BAD

 position data
 // for 6 times (1 minute)
 if ((gps_error_count > 6) && man_ctrl == 0)
 {
 sock_puts(&error_data,
 "$GPS error count exceeded. AGV in MANUAL CONTROL.\n");
 tcp_tick(NULL);
 digOut(0,1);

 //update flags for manual control

 man_ctrl = 1;
 detect_flag = 1;
 abort; //still parse if -1
 }
 }

 if (1)// (gps_error == 0)|| (gps_error == -1))
 {

 78

 GPS_updated = 1;
 curr_lat=(current_pos.lat_degrees +
(current_pos.lat_minutes/60));
 curr_lon=(current_pos.lon_degrees +
(current_pos.lon_minutes/60));

 }

 }//GPS

 /***** Passes heading error and range to CTRL costatement

* Nav**** and uses error function to determine error from
 ***** new_hdg and curr_heading*/

 costate
 {
 if (man_ctrl) abort;

 if (GPS_updated) //Navigates to new waypoint
 {
 motion_flag = 0; //reset the motion flag if AGV is

 //going to move

 lat = 60 * curr_lat; //converts latitude into
 //Minutes and decimal minutes
 lon = 60 * curr_lon; //converts longitude into
 //Minutes and decimal minutes
 wlat = 60 * waypoints[curr_wp].lat; //Converts waypoint values
 wlon = 60 * waypoints[curr_wp].lon; //to decimal minutes
 //printf("lat: %g\tlon: %g\n", lat, lon);
 //printf("wlat: %g\twlon: %g\n", wlat, wlon);

 rng = sqrt((((2000 * wlat) - (2000 * lat)) * ((2000 * wlat) -
 (2000 * lat))) + (((1600 * wlon) - (1600 * lon)) *
 ((1600 * wlon) - (1600 * lon))));

 if (rng <= rng_error) //When close enough to waypoint, action
 //code takes effect and next waypoint
 //is loaded

 {

 switch (waypoints[curr_wp].action)
 {
 case 'T': //Go to next waypoint
 {
 passed_waypoint[curr_wp] = 'T'; //Stores action code

 //in temp array
 waypoints[curr_wp].action = 'P';

//Changes action code to indicate WP has been passed
 sock_puts(&error_data, "$Proceeding to next WP\n");
 curr_wp++;

 while ((waypoints[curr_wp].lat == 0) &&
 (waypoints[curr_wp].lon == 0))
 {
//checks for valid WP
 curr_wp++;

 if (curr_wp == 10)
 {

 79

 sock_puts(&error_data, "$No Valid WP Found\n");
 tcp_tick(NULL);
 man_ctrl = 1;
 detect_flag = 1;
 abort;
 }//End if
 }//End while

 break;
 }//End case 'T'

 case 'H': //Start from beginning again
 {
 for (i = 0;i < 10;i++) //Reloads prior action codes
 {
 waypoints[i].action = passed_waypoint[i];
 }
 sock_puts(&error_data, "$Proceeding back to home WP. \n");
 curr_wp = 0;

 while ((waypoints[curr_wp].lat == 0) &&
 (waypoints[curr_wp].lon == 0))
 { //checks for valid WP

 curr_wp++;

 if (curr_wp == 10)
 {
 sock_puts(&error_data, "$No Valid WP Found\n");
 tcp_tick(NULL);
 man_ctrl = 1;
 detect_flag = 1;
 abort;
 }//End if
 }//End while

 break;
 }//End case 'H'

 case 'S': //Stop
 {
 digOut(0,1); //Stop AGV

 for (i = 0; i < 10; i++) //Clears the Waypoint array
 {
 waypoints[i].lat = 0;
 waypoints[i].lon = 0;
 waypoints[i].action='T';
 }//End for loop

 sock_puts(&error_data,
 "$Destination Achieved, Waypoints cleared\n");
 tcp_tick(NULL);
 man_ctrl = 1;
 detect_flag = 1;
 abort;
 }//End case 'S'

 case 'C': //Turn in a circle then proceed to next WP,

 //really don't use this
 {
 curr_wp++;

 80

 while ((waypoints[curr_wp].lat == 0) &&
 (waypoints[curr_wp].lon == 0))
 { //checks for valid WP
 curr_wp++;

 if (curr_wp == 10)
 {
 sock_puts(&error_data, "$No Valid WP Found\n");
 tcp_tick(NULL);
 man_ctrl = 1;
 detect_flag = 1;
 abort;
 }//End if
 }//End while

 break;
 }//End case 'C'

 case 'P': //Check for passed waypoints
 {
 curr_wp++; //AGV ignores this point and goes to next one
 while ((waypoints[curr_wp].lat == 0) &&
 (waypoints[curr_wp].lon == 0))
 { //checks for valid WP
 curr_wp++;

 if (curr_wp == 10)
 {
 sock_puts(&error_data, "$No Valid WP Found\n");
 tcp_tick(NULL);
 man_ctrl = 1;
 detect_flag =1;
 abort;
 }//End if
 }//End while

 break;
 }//End case 'P'

 default: //Indicates and invalid action code
 {
 sprintf(error_buf, "$Invalid action for WP # %d\n", curr_wp);
 sock_puts(&error_data, error_buf);
 tcp_tick(NULL);

 digOut(0,1); //Stop AGV
 man_ctrl = 1; //in manual control
 detect_flag = 1;
 abort;
 }//End default case
 }//End Switch

 if (curr_wp > 9) //Action for last WP invalid.
 {
 digOut(0,1); //Stop AGV
 man_ctrl = 1; //in manual control
 detect_flag = 1;
 sock_puts(&error_data, "$Invalid action for wp 9\n");
 tcp_tick(NULL);
 abort;
 }//End if (curr_wp>9)

 81

 }//End if (rng < rng_error)

 //If range not within error, calculate new heading

 // 3600 converts lat_diff and lon_diff to decimal seconds for
 // accuracy
 lat_diff = 3600 * (waypoints[curr_wp].lat-curr_lat);
 lon_diff = 3600 * (curr_lon - waypoints[curr_wp].lon);
 //printf("wp0_lat: %g\twp0_lon: %g\n", waypoints[curr_wp].lat,

 //waypoints[curr_wp].lon);
 //printf("lat_diff: %g\tlon_diff: %g\n", lat_diff, lon_diff);

 // determine theta in degrees
 theta = atan((lat_diff) / (lon_diff)) * (180 / pi);
 //printf("theta: %g\n", theta);

 // waypoint located in positive y-axis
 if ((lon_diff == 0) && (lat_diff > 0))
 new_hdg = 0;

 //waypoint is located in negative y-axis
 else if ((lon_diff == 0) && (lat_diff < 0))
 new_hdg = 180;

 //waypoint is located in positive x-axis
 else if ((lon_diff > 0) && (lat_diff == 0))
 new_hdg = 90;

 //waypoint is located in negative x-axis
 else if ((lon_diff < 0) && (lat_diff == 0))
 new_hdg = 270;

 //waypoint is located in the first or fourth quadrant
 //(0-90 or 270-0)
 else if ((lon_diff > 0) && (lat_diff != 0))
 new_hdg = 90 - theta;

 //waypoint is located in the second or third quadrant
 //(90-180 or 180-270)
 else if ((lon_diff < 0) && (lat_diff != 0))
 new_hdg = 270-theta;

 hdg_error = ERROR_function(new_hdg);
 tcp_tick(NULL);

 }//End if (GPS_updated)
 }//End NAV costate

 ///////PID CONROL

 costate
 {
 waitfor(!man_ctrl);

 if ((hdg_error >= 180.0) || ((hdg_error > -180.0) && (hdg_error < 0.0)))
{flag = 1;}
 else {flag = 0;}
 if (hdg_error == 0.0) {flag = 2;} //just sets a dummy
number to flag

 //calculate scale constant

 82

 compconv = fabs(hdg_error);
 if (compconv > 180.0) {compconv = 360.0 - compconv;}
 scale = ((compconv*(PW_MAX - PW_STOP))/180.0) + PW_STOP;
//related all of this to max and stop voltages, check this
 scaleint = scale + scaleint;
 if(flagint > 40){scaleint = 0.0;}
 flagint++;

if ((!(hdg_error == 0.0)) && (rng >
rng_error))

 {

 //Translate this into an equivalent forward voltage
 turnvolts = (P * scale) + (I * scaleint) + (D * scale);
 //Do not send more than we put out
 if(turnvolts > PW_MAX){turnvolts = PW_MAX;}
 //Slower turn voltage for the other side

fwdturnvolts = 0.85*turnvolts; //changed
//from 0.9 on 27 July, seems to work better

 //Do not ever let the wheels go in reverse
 if(fwdturnvolts < PW_STOP){fwdturnvolts = PW_STOP;}

 //printf("The compass error is: %f\n", hdg_error);
 //printf("The forward voltage is: %3.1f\n", turnvolts);
 //printf("The slower voltage is: %3.1f\n", fwdturnvolts);

 detect_flag = 0;
 digOut(0,0);

 //turn logic
 if(flag == 0)
 {
 anaOutVolts(rt_ch, fwdturnvolts);
 anaOutVolts(lt_ch, turnvolts);
 }
 if(flag == 1)
 {
 anaOutVolts(rt_ch, turnvolts);
 anaOutVolts(lt_ch, fwdturnvolts);
 }
 //if(hdg_error == 0.0)
 //{
 //printf("we made it\n");
 //anaOutVolts(rt_ch, PW_STOP);
 //anaOutVolts(lt_ch, PW_STOP);
 //}

}//ends if for heading error and range greater
//than range error

 else
 {
 //send the right voltages to the wheels if no
//heading error and the range is greater than the delta

 detect_flag = 0;
 digOut(0,0);

 anaOutVolts(rt_ch, PW_MAX);
 anaOutVolts(lt_ch, PW_MAX);
 }

 83

 }//end PID costate

 ///////Collision Avoidance

 costate
 {

 waitfor(!man_ctrl);

 //Sonar Itself

 k = 0;
 sonarplus = 0;

 for (k=0; k<3; ++k)
 {
 i2c_start_tx();
 write_byte(0xE0);
 getack();
 write_byte(0x00);
 getack();
 write_byte(0x50);
 getack();
 cWAIT_5_us;
 i2c_stop_tx();
 for(t0=MS_TIMER;MS_TIMER<t0+65;);
 i2c_start_tx();
 write_byte(0xE0);
 getack();
 write_byte(0x03);
 getack();
 i2c_start_tx();
 write_byte(0xE1);
 getack();
 read_byte(&sonar);
 //printf("Sonar Inches: %d\n",read);
 i2c_stop_tx();
 if (sonar == 0)
 {
 sonar = 255;
 } //this takes care of the sonar equal to zero when there is no

//return, objects 20 plus feet away
 sonarplus = sonarplus + sonar;
 }
 sonarplus = (sonarplus/3); //this averages three sonar readings 17 AUG

 //IR Rangers
 fright = anaInVolts(3);
 front = anaInVolts(4);
 fleft = anaInVolts(5);
 rear = anaInVolts(0);

 if ((front > 0.2 && front <= 2.0) || (fright > 0.2 && fright <= 2.0) ||
(fleft > 0.2 && fleft <= 2.0) || (sonarplus < 30 && sonarplus >= 10))
 {
 lside = anaInVolts(2);
 rside = anaInVolts(1);
 if (lside < rside)
 {
 anaOutVolts(lt_ch, PW_REV);

 84

 anaOutVolts(rt_ch, PW_MAX);
 msDelay(500);
 anaOutVolts(lt_ch, (PW_MAX*0.82));
 anaOutVolts(rt_ch, (PW_MAX*0.82));
 }
 if (rside < lside)
 {
 anaOutVolts(rt_ch, PW_REV);
 anaOutVolts(lt_ch, PW_MAX);
 msDelay(500);
 anaOutVolts(lt_ch, (PW_MAX*0.82));
 anaOutVolts(rt_ch, (PW_MAX*0.82));
 }
 }
 else if ((front > 2.0 || fright > 2.0 || fleft > 2.0 || sonarplus < 10.0) &&
(rear < 1.0))
 {
 anaOutVolts(lt_ch, PW_REV);
 anaOutVolts(rt_ch, PW_REV);
 msDelay(1000);
 anaOutVolts(lt_ch, PW_STOP);
 anaOutVolts(rt_ch, PW_STOP);
 lside = anaInVolts(2);
 rside = anaInVolts(1);
 if (lside < rside)
 {
 anaOutVolts(lt_ch, PW_REV);
 anaOutVolts(rt_ch, PW_MAX);
 msDelay(500);
 anaOutVolts(lt_ch, (PW_MAX*0.82));
 anaOutVolts(rt_ch, (PW_MAX*0.82));
 }
 if (rside < lside)
 {
 anaOutVolts(rt_ch, PW_REV);
 anaOutVolts(lt_ch, PW_MAX);
 msDelay(500);
 anaOutVolts(lt_ch, (PW_MAX*0.82));
 anaOutVolts(rt_ch, (PW_MAX*0.82));
 }
 }

 //printf("Front IR = %f\n", front);
 //printf("Front Right IR = %f\n", fright);
 //printf("Front Left IR = %f\n", fleft);
 //printf("Left Side IR = %f\n", lside);
 //printf("Right Side IR = %f\n", rside);
 //printf("Rear IR = %f\n\n", rear);

 } //Collision Avoidance Costatement

///////Detection Mode Costatement

 costate
 {
 if (detect_flag == 1)
 {

 digOut(0,1);
 motion1_volts = anaInVolts(6);
 motion2_volts = anaInVolts(7);

 85

 //++time_flag;
 //sprintf(error_buf, "$I'm in here %d times", time_flag);
 //sock_puts(&error_data, error_buf);

//this filters out the false contacts as the motion
//detectors settle down

 if (motion1_volts >= 1.0) {++a;}

if (motion2_volts <= 1.0) {++b;} //changed this on
//21 SEP, because of wiring

 if (motion2_volts > 1.0) {b = 0;}

 if (a >= 8)
 {
 ++motion_flag;
 sprintf(error_buf, "$Got Haji %d times (front)", motion_flag);
 sock_puts(&error_data, error_buf);
 a = 0;
 }

 if (b >= 6)
 {
 ++motion_flag;
 sprintf(error_buf, "$Got Haji %d times (side)", motion_flag);
 sock_puts(&error_data, error_buf);
 b = 0;
 }
 } //end if
 else {abort;}

 } //end detection costate

 }//while(1)

}//main

//

/* START FUNCTION DESCRIPTION **
compass_get_hdg

SYNTAX: int compass_get_data();

KEYWORDS: compass

DESCRIPTION: Parses a sentence to extract heading data.
 This function is able to parse HPR data from a
 HMR3000 Digital Compass

PARAMETER1: sentence - a string containing a line of HPR data

RETURN VALUE: 0 - success
 -1 - parsing error

 -2 - heading marked invalid

 86

SEE ALSO:

END DESCRIPTION **/

int compass_get_hdg(char sentence[MAX_SENTENCE])
{
 auto int i;
 char *err,*hdg,*type;
 char error;

 if(strlen(sentence) < 4)
 return -1;
 if(strncmp(sentence, "$PTNTHPR", 8) == 0)
 {
 //parse hpr sentence
 type = strtok(sentence, ",");
 hdg = strtok(NULL, ",");
 err = strtok (NULL, ",");
 if(hdg == NULL)
 return -2;

 //pull out data
 curr_hdg = atof(hdg);

 error = (int)err;
 if (strncmp(&error, "N", 1) == 0)
 return -2;

 }
 else
 return -1;

 return 0;

}

/* START FUNCTION DESCRIPTION **
gps_parse_coordinate

SYNTAX: gps_parse_coordinate(char *coord, int *degrees, float *minutes)

KEYWORDS: gps parse

DESCRIPTION: Parses GPS position data

PARAMETER1: coord - contains N/S, E/W
 degrees, minutes - positional information

RETURN VALUE: 0 - success (xxxxx.xxxx minutes)
 -1 - parsing error

SEE ALSO:

END DESCRIPTION **/

nodebug int gps_parse_coordinate(char *coord, int *degrees, float *minutes)
{
 auto char *decimal_point;
 auto char temp;
 auto char *dummy;

 decimal_point = strchr(coord, '.');

 87

 if(decimal_point == NULL)
 return -1;
 temp = *(decimal_point - 2);
 *(decimal_point - 2) = 0; //temporary terminator
 *degrees = atoi(coord);
 *(decimal_point - 2) = temp; //reinstate character
 *minutes = strtod(decimal_point - 2, &dummy);
 return 0;
}

/* START FUNCTION DESCRIPTION **
gps_get_position

SYNTAX: int gps_get_position(GPSPositon *newpos, char
*sentence);

KEYWORDS: gps

DESCRIPTION: Parses a sentence to extract position data.
 This function is able to parse any of the
following
 GPS sentence formats: GGA

PARAMETER1: newpos - a GPSPosition structure to fill
PARAMETER2: sentence - a string containing a line of GPS data
 in NMEA-0183 format

RETURN VALUE: 0 - success
 -1 - not differential
 -2 - sentence marked invalid
 -3 - parsing error

SEE ALSO:

END DESCRIPTION **/

//can parse GGA
nodebug int gps_get_position(GPSPosition *newpos, char *sentence)
{
 auto int i;

 if(strlen(sentence) < 4)
 return -3;
 if(strncmp(sentence, "$GPGGA", 6) == 0)
 {
 //parse GGA sentence
 for(i = 0;i < 11;i++)
 {
 sentence = strchr(sentence, ',');
 if(sentence == NULL)
 return -3;
 sentence++; //first character in field
 //pull out data
 if(i == 1) //latitude
 {
 if(gps_parse_coordinate(sentence,

&newpos->lat_degrees,

&newpos->lat_minutes)
)

 88

 {
 return -3; //get_coordinate failed
 }
 }
 if(i == 2) //lat direction
 {
 newpos->lat_direction = *sentence;
 }
 if(i == 3) // longitude
 {
 if(gps_parse_coordinate(sentence,

&newpos->lon_degrees,

&newpos->lon_minutes)
)
 {
 return -3; //get_coordinate failed
 }
 }
 if(i == 4) //lon direction
 {
 newpos->lon_direction = *sentence;
 }
 if(i == 5) //link quality
 {
 if(*sentence == '0')
 return -2;
 if(*sentence == '1')
 return -1;
 }
 }
 }
 else
 {
 return -3; //unknown sentence type
 }
 return 0;
}

/* START FUNCTION DESCRIPTION **
ERROR_function

SYNTAX: int ERROR_function(new_hdg);

KEYWORDS: nav, control

DESCRIPTION: Determines heading error for use by Nav and Control
costatements,
 currently allows a 6 degree range

PARAMETER1: new_hdg - latest update of bearing to next waypoint or direction
 to drive based upon collision contact

RETURN VALUE: hdg_error

SEE ALSO:

END DESCRIPTION **/
int ERROR_function(float new_hdg)
{
 hdg_error = new_hdg - curr_hdg;

 89

 if (hdg_error <= 6.0 && hdg_error > 0.0)
 {
 hdg_error = 0.0;
 }
 if (hdg_error >= -6.0 && hdg_error < 0.0)
 {
 hdg_error = 0.0;
 }

 return(hdg_error);
}

/* START FUNCTION DESCRIPTION **
gps_get_position

SYNTAX: void msDelay(long sd);

KEYWORDS: delay, wait

DESCRIPTION: introduces a defined ms delay loop

PARAMETER1: sd - number of ms to wait

SEE ALSO:

END DESCRIPTION **/
void msDelay (long sd)
{
 unsigned long t1;

 t1 = MS_TIMER;
 for (t1 = MS_TIMER; MS_TIMER < (sd + t1););
}

 90

THIS PAGE INTENTIONALLY LEFT BLANK

 91

LIST OF REFERENCES

[1] ARMY TECHNOLOGY. Hunter RQ-5A. http://www.army-
technology.com/project_printable.asp?ProjectID=2355,
August 2006.

[2] FOSTER-MILLER. Talon Robots. http://www.foster-
miller.com/lemming.htm, August 2006.

[3] DUNBAR, T. Demonstration of waypoint navigation for a
semi-autonomous prototype surf-zone robot. Master’s
Thesis, Naval Postgraduate School, June 2006.

[4] SUPERDROID ROBOTS. Mini ATR.
http://www.superdroidrobots.com/ATR_mini.htm, August
2006.

[5] SUPERDROID ROBOTS. Battery Pack.
http://www.superdroidrobots.com/shop/item.asp?itemid=3
50, August 2006.

[6] NTE ELECTRONICS INC. NTE933. Voltage Regulator
Specification Sheet.

[7] SUPERDROID ROBOTS. RPM Gear Motor.
http://www.superdroidrobots.com/shop/item.asp?itemid=3
73, August 2006.

[8] SUPERDROID ROBOTS. Motor Controller.
http://www.superdroidrobots.com/product_info/PWM_9_14_
05.pdf, August 2006.

[9] SUPERDROID ROBOTS. SRF08.
http://www.superdroidrobots.com/product_info/SRF08.htm,
August 2006.

[10] FRADEN, J. Handbook of Modern Sensors, 3rd Ed.,
Springer-Verlag New York, Inc. 2004, pp. 286-288.

[11] SUPERDROID ROBOTS. GP2D12.
http://www.superdroidrobots.com/product_info/SharpGP2D
12-15.pdf, August 2006.

[12] DIY KIT 30. PIR Detector.
http://kitsrus.com/pdf/k30.pdf, August 2006.

 92

[13] FRADEN, J. Handbook of Modern Sensors, 3rd Ed.,
Springer-Verlag New York, Inc. 2004, pp. 245-248.

[14] DIY KIT 49. Ultrasonic Movement Detector.
http://kitsrus.com/projects/k49.pdf, August 2006.

[15] Z-WORLD. BL2000.
http://www.zworld.com/products/bl2000/, August 2006.

[16] HONEYWELL. HMR3000.
http://www.ssec.honeywell.com/magnetic/datasheets/hmr3
000_manual.pdf, August 2006.

[17] GARMIN. WAAS.
http://www.garmin.com/about/GPS/waas.html, August
2006.

[18] GARMIN. GPS 16.
http://www.garmin.com/manuals/GPS16HVS_TechnicalSpecif
ications.pdf, August 2006.

[19] D-Link. DCS-900.
http://www.dlink.com/products/resource.asp?pid=270&rid
=807&sec=0, October 2006.

[20] TOSCANO, M. Department of Defense Joint Robotics
Program. International Conference on Unmanned Ground
Vehicle Technology (April 2000).

[21] UZAN, K. SE4015 Class Presentation (June 2003).

 93

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Physics Department
Naval Postgraduate School
Monterey, California

4. Dr. Richard Harkins
Department of Applied Physics
Naval Postgraduate School
Monterey, California

5. Dr. Nancy Haegel
Department of Applied Physics
Naval Postgraduate School
Monterey, California

